Answer:
126g
Explanation:
Data obtained from the question include:
Mole of Fe = 2.5moles
Molar Mass of Fe = 56g/mol
Mass of Fe =?
Number of mole = Mass/Molar Mass
Mass = number of mole x molar Mass
Mass of Fe = 2.25 x 56
Mass of Fe = 126g
Therefore, the mass in 2.25mol of Fe is 126g
Answer:
When naming molecular compounds prefixes are used to dictate the number of a given element present in the compound. ” Mono-” indicates one, “Di-” indicates two, “Tri-” is three, “Tetra-” is four, “Penta-” is five, and “Hexa-” is six, “Hepta-” is seven, “Octo-” is eight, “Nona-” is nine, and “Deca-” is ten.
The ionization equation is:
HF ⇄ H(+) + F(-)
The ionization constant is Ka = [H(+)] * [H(-)] / [HF]
=> [H(+)] * [F(-)] = Ka * [HF]
Given that Ka < 1
[H(+)] * [F(-)] < [HF]
Which is [HF] > [H(+)] * [F(-)] the option a. fo the list of choices.
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂