An average facility manager can build one new facility
during his or her career.
<span>A </span>facilities manager<span> is the ultimate organiser, making sure that a
workplace meets the needs of employees by managing all of the required
services. In this job, you will be responsible for the </span>management<span> of services and processes that support the core
business of an organisation.</span>
The average speed of all the molecules in an object
or sample of a substance is related to its temperature ...
and not indirectly at all.
Answer:
A
Explanation:
Constant speed (without change in direction) is not accelerating. If you are slowing down, speeding up, or changing direction, you are accelerating
The wires is what is needed to put together the whole thing, kinda like glue when you're gluing a piece of paper on it.
Anyways, the battery is the main source and main energy per say.
That energy that comes from the battery, thanks to the wires, it can transfer that said energy to both the switch and light bulb.
And as you flick the switch, it depends of how you put it together, there's two options, turning the light bulb on or turning it off.
Though it doesn't mean that since the light bulb is connected to the battery makes the bulb turn on no matter what since the switch can cancel the main source's energy.
- Ouma :>
<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J