The mole fraction of solute in a 3.87 m aqueous solution is 0.0697
<h3>
calculation</h3>
molality = moles of the solute/Kg of the solvent
3.87 m dissolve in 1 Kg of water= 1000g
find the moles of water= mass/molar mass
that is 1000 g/ 18 g/mol= 55.56 moles
mole of solute = 3.87 moles
mole fraction is = moles of solute/moles of solvent
that is 3.87/ 55.56 = 0.0697
Sodium Sulfate
= Na2(SO4) meaning there are two ions of Na+ in one mole of Sodium Sulfate the M
stands for Molarity, defined as Molarity = (moles of solute)/(Liters of
solution), So if the Na2SO4 solution is 3.65M that means one Liter of has 3.65
moles of Na2SO4, the stoichiometry of Na2SO4 shows that there would be two Na+
ions in solution for every one Na2SO4.
Therefore if
3.65 moles of Na2SO4 was to dissolve, it would produce 7.3 moles of Na+, and
since this is still a theoretical solution, we can assume 1 L of solution.
Finally we find
[Na+] = 2*3.65 = 7.3M
Use the same
logic for parts b and c