Answer:
194 g/mol.
Explanation:
Hello,
In this case, one first must compute the mass of each element as shown below:

Next, the corresponding moles:

Then, each element's subscripts is found to be:

Therefore, the empirical formula is:

Nonetheless, it has a molar mass of 97bg/mol, thereby, by multiplying such formula by 2 one gets:

Which has a molar mass of 194 g/mol being correctly contained in the given interval.
Best regards.
Explanation:
When a strong acid, say
reacts which a weak base, say
, the reaction is shown below as:-

The salt further reacts with water as shown below:-

Formation of
lowers the pH value of the solution as more hydrogen ions leads to less pH.
Aluminum has an atomic number of 13. The electronic configuration of Al is 1s2 2s2 2p6 3s2 3p1. Al3+ has only 10 electrons so the configuration of Al 3+ is 1s2<span> 2s</span>2<span> 2p</span><span>6. The highest energy level is 2 so the number of electrons in the highest level is the valence electrons which is 8.</span>
Answer:
The mole and atonmicity of both the gases are different, the number of atoms is not same.
Explanation:
The number of atoms in a molecule (compound) depends on mole number and atomicity.
↬ Mole of 100 g H₂ = 100g ÷ 2u = 50 mole
∴Number of atoms in 100 g H₂
= 2 x 50 x 6.022 × 10²³
= 6.022 x 10²⁴ atoms
↬ Mole of 100 g He = 100g ÷ 4u = 25 mole
∴ Number of atoms in 100 g He
= 1 × 25 × 6.022 × 10²³
= 150.55 × 10²³
= 1.5055 x 10²⁵ atoms
Thus, The mole and atonmicity of both the gases are different, the number of atoms is not same.
<u>-TheUnknownScientist</u><u> 72</u>