1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
3 years ago
9

2x + 3 (x - 10) = 45 ?? A. X =15 B. X=3 C. X=7 D. X=11

Mathematics
1 answer:
mario62 [17]3 years ago
3 0

Answer:

A. x = 15

Step-by-step explanation:

2x + 3 * (x - 10) = 45

2x + 3x - 30 = 45

5x - 30 = 45

5x = 75

x = 15

You might be interested in
I need help with this word problem.
zloy xaker [14]

Answer:

33 ⅓%

Step-by-step explanation:

Percent means out of 100, so write a proportion:

1 / 3 = x / 100

Solve for x by multiplying both sides by 100:

x = 100 / 3

Reduce:

x = 33 ⅓

The percent of questions he got right is 33 ⅓%.

4 0
3 years ago
Mr. Stubbert wants to buy a $520 sword, and he has a coupon for 15% off.
Oliga [24]

Answer:

the last choice is correct

Step-by-step explanation:

520 - 520(0.15)

6 0
2 years ago
2
KATRIN_1 [288]

Answer:

pair is

30 and 315

co-prime

7 0
3 years ago
7(x + y) ex2 − y2 dA, R where R is the rectangle enclosed by the lines x − y = 0, x − y = 7, x + y = 0, and x + y = 6
Anastasy [175]

Answer:

\int\limits {\int\limits_R {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

Step-by-step explanation:

Given

x - y = 0

x - y = 7

x + y = 0

x + y = 6

Required

Evaluate \int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA

Let:

u=x+y

v =x - y

Add both equations

2x = u + v

x = \frac{u+v}{2}

Subtract both equations

2y = u-v

y = \frac{u-v}{2}

So:

x = \frac{u+v}{2}

y = \frac{u-v}{2}

R is defined by the following boundaries:

0 \le u \le 6  ,  0 \le v \le 7

u=x+y

\frac{du}{dx} = 1

\frac{du}{dy} = 1

v =x - y

\frac{dv}{dx} = 1

\frac{dv}{dy} = -1

So, we can not set up Jacobian

j(x,y) =\left[\begin{array}{cc}{\frac{du}{dx}}&{\frac{du}{dy}}\\{\frac{dv}{dx}}&{\frac{dv}{dy}}\end{array}\right]

This gives:

j(x,y) =\left[\begin{array}{cc}{1&1\\1&-1\end{array}\right]

Calculate the determinant

det\ j = 1 * -1 - 1 * -1

det\ j = -1-1

det\ j = -2

Now the integral can be evaluated:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA becomes:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{x^2 - y^2}} \, *\frac{1}{|det\ j|} * dv\ du

x^2 - y^2 = (x + y)(x-y)

x^2 - y^2 = uv

So:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{|det\ j|}\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *|\frac{1}{-2}|\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{2}\, dv\ du

Remove constants

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 {\int\limits^7_0 {ue^{uv}} \, dv\ du

Integrate v

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  \frac{1}{u} * {ue^{uv}} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  e^{uv} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{u*7} -   e^{u*0}]du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{7u} -   1]du

Integrate u

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7u} -   u]|\limits^6_0

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -(\frac{1}{7}e^{7*0} -  0)]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -\frac{1}{7}]

Open bracket

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  - 6 -\frac{1}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  -\frac{43}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{42}  -\frac{43}{7}]

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

3 0
3 years ago
A scale drawing of a living room is shown below: A rectangle is shown. The length of the rectangle is labeled 3 inches. The widt
rosijanka [135]
103 ft^2
take 3 and 5 and multiply it by 30
3*30=90
5.5*30=165
then divide them both by 12 to convert inches to feet
90÷12=7.5
165÷12=13.75
then multiply both dividends together
7.5*13.75=103.125
then round to the nearest whole number
103
4 0
2 years ago
Other questions:
  • What is the recursive formula for the sequence?<br><br> 8, 6, 4, 2, 0, . . .
    5·1 answer
  • a photo that is 4in wide and 6in high enlarged to a poster that is 3ft wide and 4 1/2 ft hugh what is the ratio of the width of
    8·2 answers
  • Explain how to rewrite the equation -2x - 6y = 18 in slope-intercept form.
    8·2 answers
  • The Red Hook Raiders fundraiser has raised
    7·2 answers
  • What is -3/4 – (-1/2)?<br> A. -5/4<br> B. -1/4<br> C. 1/4<br> D. 1/2
    7·2 answers
  • Find the circumference in inches
    7·2 answers
  • Which graph shows g(x)=(13)x−2+6?<br><br> (pretend I did not select anything)
    15·2 answers
  • I need help ASAP please
    14·1 answer
  • What is the slope of the line?<br> y + 5 = 2(x + 1)
    6·1 answer
  • Matt hunts 5 out of 7 days in bow season. If bow season is 35 days long, how many days does Matt hunt?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!