In this reaction 50% of the compound decompose in 10.5 min thus, it is half life of the reaction and denoted by symbol
.
(a) For first order reaction, rate constant and half life time are related to each other as follows:

Thus, rate constant of the reaction is
.
(b) Rate equation for first order reaction is as follows:
![k=\frac{2.303}{t_{1/2}}log\frac{[A_{0}]}{[A_{t}]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt_%7B1%2F2%7D%7Dlog%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D)
now, 75% of the compound is decomposed, if initial concentration
is 100 then concentration at time t
will be 100-75=25.
Putting the values,

On rearranging,

Thus, time required for 75% decomposition is 21 min.
Sunlight i think thats the answer
To minimize the sharp pH shift that occurs when a strong acid is added to a solution, IT IS PRACTICAL TO ADD A WEAK BASE.
When a strong acid is added to a solution, it usually brings about a sharp change in the pH of the concerned solution. To avoid this, one can add a weak base to the solution first. The weak base will serves as a buffer for the strong acid and prevents the solution from experiencing sharp pH variations.