Answer:
The ΔHrxn for the above equation = 179 kJ/mol
Explanation:
The reaction bond enthalpies are for the reactant;
3 × N-H = 3 × 390 = 1,170 kJ/mol
2 × O=O = 2 × 502 = 1004 kJ/mol
The reaction bond enthalpies are for the product;
3 × N-O = 3 × 201 = 603 kJ/mol
3 × O-H = 3 × 464 = 1,392 kJ/mol
The ΔHrxn for the above equation is therefore;
ΔHrxn = 1,170 + 1,004 - (603 + 1,392) = 179 kJ/mol
Answer:
Burning wood
Explanation:
the fire releases heat into the air from the burning wood
Answer:
Moles of
= 6 moles
Explanation:
The reaction of
and
to make
is:
⇒
The above reaction shows that 2 moles of Sc can react with 3 moles of
to form 
Mole Ratio= 2:3
For 10 moles of Sc we need:
Moles of
= 
Moles of
= 
Moles of
=15 moles
So 15 moles of
are required to react with 10 moles of
but we have 9 moles of
, it means
is limiting reactant.


Moles of ScCl_3= 6 moles
Answer:
Volume is directly proportional to absolute temperature.
Explanation:
Answer: Cellular respiration is spontaneous and exergonic. The energy released from the glucose is stored in ATP molelcules.
Explanation:
Spontaneous reactions have an increase in entropy (level of disorder) and a decrease in enthalpy (total energy). Cellular respiration goes from a more ordered state (one molecule of glucose) to a more disordered state (several molecules of CO2), and goes from a state with a lot of free energy to one with much less free energy. As a result, respiration is a spontaneous process.
As free energy from the glucose is released as ATP molecules during oxidation, the reaction is exergonic.