Answer:
Dh/dt = 0.082 ft/min
Step-by-step explanation:
As a perpendicular cross section of the trough is in the shape of an isosceles triangle the trough has a circular cone shape wit base of 1 feet and height h = 2 feet.
The volume of a circular cone is:
V(c) = 1/3 * π*r²*h
Then differentiating on both sides of the equation we get:
DV(c)/dt = 1/3* π*r² * Dh/dt (1)
We know that DV(c) / dt is 1 ft³ / 5 min or 1/5 ft³/min
and we are were asked how fast is the water rising when the water is 1/2 foot deep. We need to know what is the value of r at that moment
By proportion we know
r/h ( at the top of the cone 0,5/ 2) is equal to r/0.5 when water is 1/2 foot deep
Then r/h = 0,5/2 = r/0.5
r = (0,5)*( 0.5) / 2 ⇒ r = 0,125 ft
Then in equation (1) we got
(1/5) / 1/3* π*r² = Dh/dt
Dh/dt = 1/ 5*0.01635
Dh/dt = 0.082 ft/min
It’s should be the second on so b and you should get it corrdct
P(heads, and even and blue) = 1/2 *3/6 *1/4=1/2*1/2*1/4=1/16
P(heads, and 5, and green) = 1/2*1/6*1/4=1/48
P((heads or tail), and odd, and red)= (1/2+1/2)*3/6*1/4=1*1/2*1/4 = 1/8
P((heads or tail), and 3, and yellow)= (1/2+1/2)*1/6*1/4=1*1/6*1/4=1/24
P(tails, and prime, and not green) = 1/2 *3/6*3/4= 1/2*1/2*3/4=3/16
(Prime numbers here are 2,3 and 5)
Answer:


Step-by-step explanation:
we are given two <u>coincident</u><u> points</u>

since they are coincident points

By order pair we obtain:

now we end up with a simultaneous equation as we have two variables
to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>
to do so, make a the subject of the equation.therefore from the second equation we acquire:

now substitute:

distribute:

collect like terms:

rearrange:

by <em>Pythagorean</em><em> theorem</em> we obtain:

cancel 4 from both sides:

move right hand side expression to left hand side and change its sign:

factor out sin:

factor out 2:

group:

factor out -1:

divide both sides by -1:

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

divide both sides by 2:

by unit circle we get:

so when θ is 60° a is:

recall unit circle:

simplify which yields:

when θ is 300°

remember unit circle:

simplify which yields:

and we are done!
disclaimer: also refer the attachment I did it first before answering the question