Information I learned from history class Education in the 1950's expanded from previous decades. They no longer focused purely on reading, writing and arithmetic. History and science became a main part of the cirriculum. Also, enrollment skyrocketed as the baby-boomers began enrolling in elementary school. One interesting thing that categorized this generation was the presence of fallout tests. Schools would require the students to go through a fake atomic bomb attack in which they would hide under their desks (which was completely pointless in protecting them from radiation, it was more of an emotional security for the parents and teachers, but scared the hell out of the students). Socially, children were taught to conform and to be normal. Standing out or questioning authority was bad. Sex was taught, though minimally. They explained the penis and vagina. Sexually transmitted diseases were focused on greatly so as to "scare" the students out of premarital sex.
Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
Answer:
Velocity
Explanation:
We finds that the winds are coming from the west at 15 miles per hour. This information shows the velocity of the wind. Since, velocity is a vector quantity. It has both magnitude and direction. 15 miles per hour shows the speed of wind and west shows the direction of wind motion.
Hence, the given information describes wind velocity.
Answer:
R = 5.28 103 km
Explanation:
The definition of density is
ρ = m / V
V = m /ρ
Where m is the mass and V the volume of the body
The volume of a sphere is
V = 4/3 π r³
Let's replace
4/3 π r³ = m / ρ
R =∛ ¾ m / ρ π
The mass of the planet is
M = 5.5 Me
R = ∛ ¾ 5.5 Me /ρ π
Let's reduce the density to SI units
ρ = 1.76 g / cm³ (1 kg / 10³ g) (10² cm / 1 m)³
ρ = 1.76 10³ kg / m³
Let's calculate
R = ∛ ¾ 5.5 5.97 10²⁴ / (1.76 10³ pi)
R = ∛ 0.14723 10²¹
R = 0.528 10⁷ m
R = 0.528 104 km
R = 5.28 103 km