Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance defined by the formula:
Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:
and when this is combined with the third resistor in series, the equivalent resistance () of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):
The problem states that the difference between the equivalent resistances in both circuits is given by:
so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:
Answer:B 20 newtons opposite to the direction of the applied force
Explanation:
Answer:
3 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
Using the Boyle's law equation, the new volume (i.e final volume) of the Ne gas can be obtained as:
Initial volume (V₁) = 2 L
Initial pressure (P₁) = 0.75 atm
Final pressure (P₂) = 0.5 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
0.75 × 2 = 0.5 × V₂
1.5 = 0.5 × V₂
Divide both side by 0.5
V₂ = 1.5 / 0.5
V₂ = 3 L
Thus, the new volume of the Ne gas is 3 L
If the substance doesn't change chemically, it is a physical reaction.