Answer:
Explanation:
When saw slices wood by exerting a force on the wood , wood also exerts a reaction force on the saw in opposite direction which is equal to the force of action that is 104 N.
So torque exerted by wood on the blade
= force x perpendicular distance from the axis of rotation
= 104 x .128
=13.312 Nm.
Since this torque opposes the movement of blade , it turns the blade slower.
Answer: 100cm
Explanation:
The force of friction on a surface normal to gravity where µ is the coefficient of friction is
F = µmg
Where
F = the friction force
µ = coefficient of friction
m = mass of the object
g = acceleration due to gravity
Also, the Kinetic Energy of the object, E = Fs, where
E = Kinetic Energy
s = stopping distance. So that,
E = µmgs
40 J = 0.4 * 10 kg * 10 m/s² * s
40 J = 40 kgm/s² * s
s = 40 J / 40 kgm/s²
s = 1 m or 100 cm
Answer:
The specific heat capacity can be defined as the amount of heat required to raise the temperature of 1 unit of mass by 1 unit temperature. The specific heat capacity of water is 4.186 joule/gram °C which is higher than common substances. The land has lower specific heat capacity. Thus, the land gets hot quickly than water.
This results in warming up air near the land which creates a difference in pressure across the coastal region. Sea breeze blows from sea towards landmass. Opposite happens at night, when water is still warm and land gets cooled down quickly. Then land breeze blows from landmass towards the sea. This breeze maintains a moderate temperature and windy and humid weather in the coastal regions.
Answer: 
Explanation:
Given
Diameter of the rod 
length of rod is 
Resistivity of silicon is 
cross-section of the rod 

Resistance of rod is R


Current is given by

Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s