1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
4 years ago
7

Consider the function f(x)= 2/5x-4

Mathematics
1 answer:
Gre4nikov [31]4 years ago
5 0

Answer: a) \frac{5}{2}x+10=f^{-1}(x)=g(x)

Step-by-step explanation:

Since we have given that

f(x)=\frac{2}{5}x-4

a.) Find the inverse of f(x) and name it g(x).

Let f(x) = y

So, it becomes

y=\frac{2}{5}x-4

Switching x to y , we get

x=\frac{2}{5}y-4

5x=2y-20\\\\5x+20=2y\\\\\frac{5x+20}{2}=y\\\\\frac{5}{2}x+10=y\\\\\frac{5}{2}x+10=f^{-1}(x)=g(x)

b) . Use composition to show that f(x) and g(x) are inverses of each other.

\mathrm{For}\:f=\frac{2}{5}x-4\:\\\\\mathrm{substitute}\:x\:\mathrm{with}\:g\left(x\right)=\frac{5}{2}x+10\\\\=\frac{2}{5}\left(\frac{5}{2}x+10\right)-4\\\\=x

Similarly,

\mathrm{g\left(x\right)=\frac{5}{2}x+10,\:f\left(x\right)=\frac{2}{5}x-4,\:g\left(x\right)\circ \:f\left(x\right)}\\\\\mathrm{For}\:g=\frac{5}{2}x+10\:\mathrm{substitute}\:x\:\mathrm{with}\:f\left(x\right)=\frac{2}{5}x-4\\\\=\frac{5}{2}\left(\frac{2}{5}x-4\right)+10\\\\=x

so, both are inverses of each other.

c) Draw the graphs of f(x) and g(x) on the same coordinate plane.

As shown below in the graph , Since for inverse function we need an axis of symmetry i.e. y=x

And both f(x) and g(x) are symmetry to y=x.

∴ f(x) and g(x) are inverses of each other.


You might be interested in
I need help with this question please
ikadub [295]

Answer:

Just connect points Y and D with a straight line to make YD. Do the same for YE and YF, just attach Y to points E and F with a straight line.

5 0
3 years ago
When dealing with the number of occurrences of an event over a specified interval of time or space, the appropriate probability
sdas [7]

Answer:

a)  Poisson distribution

use a  Poisson distribution model when events happen at a constant rate over time or space.

Step-by-step explanation:

<u> Poisson distribution</u>

  • Counts based on events in disjoint intervals of time or space produce a Poisson random variable.
  • A Poisson random variable has one parameter, its mean λ
  • The Poisson model uses a Poisson random variable to describe counts in data.

use a  Poisson distribution model when events happen at a constant rate over time or space.

<u>Hyper geometric probability distribution</u>:-

The Hyper geometric probability distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws without replacement, from a finite population of size that contains exactly objects with that feature where in each draw is either a success or failure.

This is more than geometric function so it is called the <u>Hyper geometric probability distribution </u>

<u></u>

<u>Binomial distribution</u>

  • The number of successes in 'n' Bernoulli trials produces a <u>Binomial distribution </u>. The parameters are size 'n' success 'p' and failure 'q'
  • The binomial model uses a binomial random variable to describe counts of success observed for a real phenomenon.

Finally use a Binomial distribution when you recognize distinct Bernoulli trials.

<u>Normal distribution</u>:-

  • <u>normal distribution is a continuous distribution in which the variate can take all values within a range.</u>
  • Examples of continuous distribution are the heights of persons ,the speed of a vehicle., and so on
  • Associate normal models with bell shaped distribution of data and the empirical rule.
  • connect <u>Normal distribution</u> to sums of like sized effects with central limit theorem
  • use histograms and normal quantile plots to judge whether the data match the assumptions of a normal model.

<u>Conclusion</u>:-

Given data use a  Poisson distribution model when events happen at a constant rate over time or space.

3 0
3 years ago
What is the solution set of the quadratic inequality 6x^2+1 0
Cloud [144]

Answer:

2(3x2+5)

Step-by-step explanation:

4 0
3 years ago
A circle has a circumference of 907.46907.46907, point, 46 units. What is the diameter of the circle? units
Ilya [14]
The answer is 289units
8 0
4 years ago
A tape manufacturer has created a new formula that is supposed to be more adhesive on all types of surfaces. Managers wish to co
taurus [48]

Answer:

This is an experiment with blocking ( B )

Step-by-step explanation:

The best way to describe this experiment is an experiment with blocking this is because the Type of surface where the tape is been tested can be considered a  blocking variable while the weights can be considered  as treatments

A blocking variable is a variable used in experiment which is not of primary interest to the experiment  observer ( I.e. The tape is supposed to hold on all types of surfaces and not just on Aluminum and wood surface )

8 0
3 years ago
Other questions:
  • 4 - 5/2 * (1/10x) = 1 what is the value of x
    9·1 answer
  • F(x)+x^2+3x+2 is shifted 2 units left. the result is g(x). what is g(x)?
    8·2 answers
  • Solve for x: 7 over 8 minus 1 over x equals 3 over 4.
    12·1 answer
  • Help me on 12 and 13 please
    5·1 answer
  • What is the interval notation for the following graph
    14·1 answer
  • WHAT IS THE MEDIAN FOR 280 +280 DIVIDED BY 2
    12·1 answer
  • How to solve including answer; 9r^2 +30r +25=0 by factoring
    5·1 answer
  • 3(g + 4) = 9<br> Need help
    9·2 answers
  • Pls help everyone plssssssss
    7·1 answer
  • I need help! If you answer I will mark!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!