Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
Answer: measure the mass (48.425g) of KCl
Explanation:
To prepare the solution 0.65M KCl we must measure the mass of KCl that would be dissolved in 1L of the solution. This can be achieved by:
Molar Mass of KCl = 39 + 35.5 = 74.5g/mol
Number of mole (n) = 0.65
Mass conc of KCl = n x molar Mass
Mass conc of KCl = 0.65 x 74.5 = 48.425g
Therefore, to make 0.65M KCl, we must measure 48.425g
6 Na + 1 Fe₂O₃ → 3 Na₂O + 6 Fe
<h3>Explanation</h3>
Method One: Refer to electron transfers.
Oxidation states:
- Na: from 0 to +1; loses one electron.
- Fe: from +3 to 0; gains three electrons.
Each mole of Fe₂O₃ contains two Fe atoms and will gain 2 × 3 = 6 electrons during the reaction. It takes 6 moles of Na to supply all those electrons.
6 Na + 1 Fe₂O₃ → ? Na₂O + ? Fe
- There are two moles of Na atoms in each mole of Na₂O. 6 moles of Na will make 3 moles of Na₂O.
- There are two moles of Fe atoms in each mole of Fe₂O₃. 1 mole of Fe₂O₃ will make 2 moles of Fe.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Method Two: Atoms conserve.
Fe₂O₃ has the largest number of atoms among one mole of all four species in this reaction. Assume <em>one</em> as its coefficient.
? Na + <em>1</em> Fe₂O₃ → ? Na₂O + ? Fe
There are two moles of Fe atoms and three moles of O atoms in each mol of Fe₂O₃. One mole of Fe₂O₃ contains two moles of Fe and three moles of O. There are one mole of O atom in every mole of Na₂O. Three moles of O will go to three moles of Na₂O.
? Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Each mole of Na₂O contains two moles of Na. Three moles of Na₂O will contain six moles of Na.
<em>6</em> Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Simplify the coefficients. All coefficients in this equation are now full number and relatively prime. Hence the equation is balanced.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Answer:
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
Explanation:
Propane can be turned into hydrogen by the two-step reforming process.
In the first step, propane and water react to form carbon monoxide and hydrogen. The balanced chemical equation is:
C₃H₈(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g)
In the second step, carbon monoxide and water react to form hydrogen and carbon dioxide. The balanced chemical equation is:
CO(g) + H₂O(g) ⇒ H₂(g) + CO₂(g)
In order to get the net chemical equation for the overall process, we have to multiply the second step by 3 and add it to the first step. Then, we cancel what is repeated.
C₃H₈(g) + 3 H₂O(g) + 3 CO(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g) + 3 H₂(g) + 3 CO₂(g)
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)