1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
14

Which list shows the low tides from lowest to highest?

Mathematics
2 answers:
bija089 [108]3 years ago
5 0

Answer:

The first one –1.6, –0.8, 1.5, 2.6

Step-by-step explanation:

mario62 [17]3 years ago
4 0

Answer:it’s a

Step-by-step explanation:

You might be interested in
10 points...............
astraxan [27]

Answer:

It should be the second one 4,18,6

Step-by-step explanation:

Let me know if that is right . . .

Hope this helps!

3 0
2 years ago
Help me I'm lost on this unit.​
Liula [17]

Answer:

remainder = 32

Step-by-step explanation:

Using synthetic division with divisor (x - 2) , that is h = 2

There is no x³ term so include zero as its coefficient in the table

2 | 3   0   - 3   2   - 8

    ↓    6   12   18    40

   ------------------------------

   3    6    9     20    32 ← remainder

   

   

6 0
2 years ago
What is -7 plus 7 equal too
nikklg [1K]

Answer:

The answer is 0

Step-by-step explanation:

Have a nice day

8 0
2 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
2 years ago
What is the value of the expression shown below?
faltersainse [42]

Answer:

It should be

Step-by-step explanation:

<h2><u><em>B.</em></u></h2><h2>23    1/4</h2>
5 0
2 years ago
Other questions:
  • C. Assume someone has an average balance account with a bank that costs $35 a month but earns
    7·1 answer
  • Idk how to do this equation
    12·1 answer
  • 60203 round to nearest ten
    6·2 answers
  • Is x greater than, less than, or equal to 94° ?
    6·2 answers
  • Angle measurements 110 degree help find out the balance at the top
    6·1 answer
  • Can someone help me please !!!!! Today is the last day and I don’t know anything help me please
    14·1 answer
  • 14. What is the vertex of y=-3x2 + 6x +15?
    12·1 answer
  • 5+3w+3-w combine like terms to simplify
    12·2 answers
  • What do you know to be true about the values of p and q?
    6·1 answer
  • Solve for x ~<br><img src="https://tex.z-dn.net/?f=14x%20-%20196%3D%200" id="TexFormula1" title="14x - 196= 0" alt="14x - 196= 0
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!