B. Gases because it increase by less
Answer:
<h3>Yes, Passive transport can occur in dead cells.</h3>
Explanation:
For passive transport to occur, a concentration gradient has to be formed across a permeable or semi-permeable membrane. If the cell membrane of the dead cell, which is a semipermeable membrane, is intact and a concentration gradient has formed on both sides, passive transport can occur.
A concentration gradient is the difference in the concentration of solute molecules across the membrane. Passive transport will allow solute molecules to travel from the higher concentration of the solute to the lower concentration across a membrane till equilibrium is reached, that is, both the sides of the membrane has equal concentration of the solute.
The transport of the solvent can occur as well, from higher concentration to lower concentration.
<u>Answer:</u>
The process of "Osmosis" is modeled in the plant cell diagrams seen here.
<u>Explanation:</u>
Osmosis is the natural gross migration of solvent particles into a zone of higher solute concentration via a selectively permeable membrane, in the path that seeks to balance the amounts of solvents on both the ends. Osmosis as biological membranes are semipermeable, is a critical mechanism in biological systems.
Such membranes are usually impenetrable to massive and polar molecules like polysaccharides, ions and proteins while being porous to hydrophobic or non-polar molecules like lipids and to small molecules as carbon dioxide, oxygen, nitric oxides and nitrogen.
Answer:
because the body requires a higher supply of oxygen
Explanation:
Cellular respiration can be divided into two different metabolic processes: aerobic respiration which needs oxygen (O2) and anaerobic respiration (without O2). The aerobic cellular respiration is produced when glucose molecules react with O2 in order to form ATP, the energy currency of the cell. Aerobic cellular respiration is the main source for generating ATP. During exercise, the requirement of O2 will be higher because the cellular respiration rate is increased in order to produce more energy (ATP). In consequence, during physical activities, it is required have to breathe faster to supply this O2, which enters into the lungs to be transported to all the cells through blood circulation.