Answer is in a pho
to. I can only uplo
ad it to a file host
ing service. link below!
bit.
ly/3a8Nt8n
Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.
Answer:
Because you can physically see the object melting when it comes to the melting point. The objects texture, color, temperature, shape, and state of matter (solid, liquid, gas) are possibly changing.
Limestone and marble are the two rocks that are easily weathered by carbonic acid. Two kinds of weathering mostly affect the rocks. and they are physical weathering and chemical weathering. The above mentioned two rocks are highly affected by carbonic acid. The appeareance of these kind of rocks change their structure due to erosion very regularly. Caronation is the type of chemical weathering that affects the rocks limestone and marble. The carbonic acide is formed by the reaction of carbon dioxide in the air and water in the rivers. This carbonic acid results in weathering.
I would think that b would be the right answer