Ethylene glycol is termed as the primary ingredients in antifreeze.
The ethylene glycol molecular formula is C₂H₆O₂.
Molar mass of C₂H₆O₂ is = (2×12) +(6×1) + (216) = 62g/mol
Now that antifreeze by mass is 50%, then there is 1kg of ethylene glycol which is present in 1kg of water.
ΔTf = Kf×m
ΔTf = depression in the freezing point.
= freezing point of water freezing point of the solution
= O°c - Tf
= -Tf
Kf = depression in freezing constant of water = 1.86°C/m
M is the molarity of the solution.
=(mass/molar mass) mass of solvent in kg
=1000g/62 (g/mol) /1kg
=16.13m
If we plug the value we get
-Tf = 1.86 × 16.13 = 30
Tf = -30°c
Density is directly proportional to mass. So if there's less matter inside object, its density will also reduce.
Answer:
2.43J
Explanation:
Given parameters:
Mass of the arrow = 0.155kg
Velocity = 31.4m /s
Unknown:
Kinetic energy when it leaves the bow = ?
Solution:
The kinetic energy of a body is the energy in motion of the body;
it can be derived using the expression below:
K.E =
m v²
m is the mass
v is the velocity
Solve for K.E;
K.E =
x 0.155 x 31.4 = 2.43J
Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring