Answer:
the answer is c
Explanation:
melting = become liquefied by heat
solubility = a new bond formation
conductivity = electric transmitter
flammability = burnable
from kinematics equation if we know that final speed is ZERO and initial speed is given that due to constant deceleration the object will stop in some distance "d" and this distance can be calculated by kinematics


here acceleration due to friction will be same at all different speed
so for 45 km/h speed the distance of stop is 15 m
while at other speed 112.5 km/h the distance will be unknown
now we will have


now divide above two equations


So it will stop in distance 93.75 m
Answer:
Explanation:This question is simply asking you to describe the following equations:
E = hv
v = c/L
E = hc/L
where E is the energy, h is Planck's constant, v is the frequency, c is the speed of light and L is the wavelength.
By looking at the equations you should be able to tell what the relationships between energy, frequency and wavelength are. If you are having difficulty describing them, then create a table with actual values and see what happens to the energy as you increase or decrease the frequency and/or wavelength.
Answer:

Explanation:
Given:
height above the horizontal form where the ball is hit, 
angle of projectile above the horizontal, 
initial speed of the projectile, 
<u>Firstly we find the </u><u>vertical component of the initial velocity</u><u>:</u>



During the course of ascend in height of the ball when it reaches the maximum height then its vertical component of the velocity becomes zero.
So final vertical velocity during the course of ascend:
Using eq. of motion:
(-ve sign means that the direction of velocity is opposite to the direction of acceleration)

(from the height where it is thrown)
<u>Now we find the time taken to ascend to this height:</u>



<u>Time taken to descent the total height:</u>
- we've total height,


- during the course of descend its initial vertical velocity is zero because it is at the top height, so



<u>Now the total time taken by the ball to hit the ground:</u>


