Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current
. In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For
,


For
,


The current in the entire battery is equivalent to,


Our values are,




Replacing in the current for t= 0.4m/s



Answer:
Newton's law of gravitation, statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
Potassium is the 19th element so it is B
Answer:
v = 94m/s
Explanation:
Using the first equation of motion
v = u + at
u = 4m/s , a = 3m/s² , t = 30s , v = ?
v = u + at
v = 4 + 3 × 30
v = 4 + 90
v = 94m/s
I hope this was helpful, please mark as brainliest