Answer:
Wavelength = 1.36 * 10^{-34} meters
Explanation:
Given the following data;
Mass = 0.113 kg
Velocity = 43 m/s
To find the wavelength, we would use the De Broglie's wave equation.
Mathematically, it is given by the formula;

Where;
h represents Planck’s constant.
m represents the mass of the particle.
v represents the velocity of the particle.
We know that Planck’s constant = 6.6262 * 10^{-34} Js
Substituting into the formula, we have;


Wavelength = 1.36 * 10^{-34} meters
Usually in the deep sea and underwater caves where there is no light
Answer:
Given
mass (m) =2kg
velocity (v) =3m/s
momentum (p) =?
Form
p=mv
2kgx3m/s
p=6kg.m/s
the momentum of ball's =6kg.m/s
In collision of the steel ball and the steel plate, the collision is an inelastic collision and there is loss in the kinetic energy.
<h3>What are collisions?</h3>
Collisions occur when two objects that are moving in the same directions or in different direction meet each other and collide.
There are two types of collisions:
- elastic collision - the kinetic energy is conserved
- inelastic collision - there is a loss in kinetic energy
In the collision of the steel ball and the steel plate, there is loss in the kinetic energy of the steel ball which is converted to sound energy.
In conclusion, the collision of the steel and steel plate is an inelastic collision.
Learn more about collisions at: brainly.com/question/7694106
#SPJ1
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.