Since we have a 37-gon here, the sum of the interior angles will be:
<span>(37 - 2) * 180 </span>
<span>= 6300 degrees</span>
I know its 28 units i had it on a test
Answer:
y=3
Step-by-step explanation:
y + 3 = -y + 9
y + y = 9 - 3
2*y = 6
y = 6/2
y = 3
Answer:
13/6
Step-by-step explanation:
1 Simplify \sqrt{8}
8
to 2\sqrt{2}2
2
.
\frac{2}{6\times 2\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
6×2
2
2
2
−(−
81
18
)
2 Simplify 6\times 2\sqrt{2}6×2
2
to 12\sqrt{2}12
2
.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
12
2
2
2
−(−
81
18
)
3 Since 9\times 9=819×9=81, the square root of 8181 is 99.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{9})
12
2
2
2
−(−
9
18
)
4 Simplify \frac{18}{9}
9
18
to 22.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-2)
12
2
2
2
−(−2)
5 Rationalize the denominator: \frac{2}{12\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}}{12\times 2}
12
2
2
⋅
2
2
=
12×2
2
2
.
\frac{2\sqrt{2}}{12\times 2}\sqrt{2}-(-2)
12×2
2
2
2
−(−2)
6 Simplify 12\times 212×2 to 2424.
\frac{2\sqrt{2}}{24}\sqrt{2}-(-2)
24
2
2
2
−(−2)
7 Simplify \frac{2\sqrt{2}}{24}
24
2
2
to \frac{\sqrt{2}}{12}
12
2
.
\frac{\sqrt{2}}{12}\sqrt{2}-(-2)
12
2
2
−(−2)
8 Use this rule: \frac{a}{b} \times c=\frac{ac}{b}
b
a
×c=
b
ac
.
\frac{\sqrt{2}\sqrt{2}}{12}-(-2)
12
2
2
−(−2)
9 Simplify \sqrt{2}\sqrt{2}
2
2
to \sqrt{4}
4
.
\frac{\sqrt{4}}{12}-(-2)
12
4
−(−2)
10 Since 2\times 2=42×2=4, the square root of 44 is 22.
\frac{2}{12}-(-2)
12
2
−(−2)
11 Simplify \frac{2}{12}
12
2
to \frac{1}{6}
6
1
.
\frac{1}{6}-(-2)
6
1
−(−2)
12 Remove parentheses.
\frac{1}{6}+2
6
1
+2
13 Simplify.
\frac{13}{6}
6
13
Done
Answer:the answeer is
= 72 ft³
Step-by-step explanation:
Multiply the width of the wall by its height. So one of the walls is 80 square feet (10 feet wide x 8 feet high) and the other is 96 square feet (12 feet x 8 feet). If you need the total square footage of the walls - for figuring paint or wallpaper for example - you can simplify the calculation by first adding all the wall lengths together, then multiplying by the height (10 + 12 + 10 + 12 = 44 x 8 = 352 square feet of total wall area).