Ans: Beat frequency =
= 4HzExplanation: The beat frequency is equal to the absolute value of the difference in frequency of the two waves. In other words, the number of beats per second is equal to the difference in frequency. It is due to the destructive and constructive interference. <span>According to this interference, sound will be soft or loud.
Hence. the formula is:
</span>Beat frequency =

<span>
Since,
</span>


Therefore,
Beat frequency =

=> Beat frequency =

-i
Pressure is defined as the force per unit area on a body.
<h3><u>Answer;</u></h3>
= 73 N
<h3><u>Explanation</u>;</h3>
Using the formula
2 T cos(30°) = w
Where; T is the tension on each string, while w is the weight of the box given by mg
Therefore;
W = 2Tcos 30°
= 2 × 42 cos 30°
= 84 cos 30°
= 72.74
<u> ≈ 73 N</u>
Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
To solve this problem we will apply the concepts related to the balance of Forces, the centripetal Force and Newton's second law.
I will also attach a free body diagram that allows a better understanding of the problem.
For there to be a balance between weight and normal strength, these two must be equivalent to the centripetal Force, therefore


Here,
m = Net mass
= Angular velocity
r = Radius
W = Weight
N = Normal Force

The net mass is equivalent to

Then,

Replacing we have then,

Solving to find the angular velocity we have,

Therefore the angular velocity is 0.309rad/s