1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
10

Which is the average kinetic energy of particles in an object?

Physics
1 answer:
alina1380 [7]3 years ago
5 0
The amount of heat in the body in joule
You might be interested in
What is the atomic number of an atom?
Sever21 [200]

Answer:

B, the number of protons.

Explanation:

It is the number of protons found in the nucleus of the atom.

4 0
3 years ago
A 12.0 g bullet was fired horizontally into a 1 kg block of wood. The bullet initially had a speed of 250 m/s. The block of wood
LuckyWell [14K]

Answer:

The rise in height of combined block/bullet from its original position is 0.45m

Explanation:

Given;

mass of bullet, m₁ = 12 g = 0.012 kg

mass of block of wood, m₂ = 1 kg

initial speed of bullet, u₁ = 250 m/s.

initial speed of block of wood, u₂ = 0

From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.

m₁u₁ + m₂u₂ = v(m₁+m₂)

where;

v is the final speed of the combined block/bullet system.

0.012 x 250 + 0 = v (0.012 + 1)

3 = v (1.012)

v = 3/1.012

v = 2.96 m/s

From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.

¹/₂mv² = mgh

¹/₂v² = gh

¹/₂ (2.96)² = (9.8)h

4.3808 = 9.8h

h = 4.3808/9.8

h = 0.45 m

Therefore, the rise in height of combined block/bullet from its original position is 0.45m

7 0
3 years ago
Read 2 more answers
As more and more resistors are added in parallel to a circuit, the equivalent resistance of the circuit ____________ (increases,
Anestetic [448]

Answer:

Decreases, Increases

Explanation:

Resistance is parallel can be calculated using

1/Req = 1/R1 + 1/R2 + 1/R3 +....

Then, as more resistor is added in parallel the equivalent resistance is reduced.  

Let use a simple sample

Let all the resistor have equal resistances

Let say R = R1 = R2 = R3 =...Rn

Then, 1/Req = 1/R1 + 1/R2 + 1/R3 +....

1/Req = 1/R + 1/R + 1/R +.... 1/Rn

Req = R/n

Check attachment on how I got that.

This implies that, the equivalent resistance will always be less than the original resistance, since n>1

So, as n increases (I.e. as the number of resistance increases), the equivalent resistance reduces.

B. Now, to know if the current reduces or increases

Using Ohms law

V = iR

Then, I = V/R

So, let assume the voltage is constant, then, the current is inversely proportional to the resistance, so as we know that the resistance is reducing, then the current will be increasing.

So current increase as we add more resistor in parallel to a circuit

3 0
3 years ago
A sinusoidal voltage is given by the expression ????(????)=20cos(5π×103 ????+60°) V. Determine its (a) frequency in hertz, (b) p
MA_775_DIABLO [31]

<em>There are some placeholders in the expression, but they can be safely assumed</em>

Answer:

(a) f=1617.9\ Hz

(b) T=0.618\ ms

(c) A=20 \ Volts

(d) \varphi=60^o

Explanation:

<u>Sinusoidal Waves </u>

An oscillating wave can be expressed as a sinusoidal function as follows

V(t)&=A\cdot \sin(2\pi ft+\varphi )

Where

A=Amplitude

f=frequency

\varphi=Phase\  angle

The voltage of the question is the sinusoid expression  

V(t)=20cos(5\pi\times 103t+60^o)

(a) By comparing with the general formula we have

f=5\pi\times 103=1617.9\ Hz

\boxed{f=1617.9\ Hz}

(b) The period is the reciprocal of the frequency:

\displaystyle T=\frac{1}{f}

\displaystyle T=\frac{1}{1617.9\ Hz}=0.000618\ sec

Converting to milliseconds

\boxed{T=0.618\ ms}

(c) The amplitude is

\boxed{A=20 \ Volts}

(d) Phase angle:

\boxed{\varphi=60^o}

4 0
3 years ago
A spring has a equilibrium length of 10.0 cm. When a force of 40.0 N is applied to the spring, the spring has a length of 14.0 c
mote1985 [20]

Answer:

The value of the spring constant of this spring is 1000 N/m

Explanation:

Given;

equilibrium length of the spring, L = 10.0 cm

new length of the spring, L₀ = 14 cm

applied force on the spring, F = 40 N

extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm

From Hook's law

Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.

F ∝ e

F = ke

where;

k is the spring constant

k = F / e

k = 40 / 0.04

k = 1000 N/m

Therefore, the value of the spring constant of this spring is 1000 N/m

7 0
3 years ago
Other questions:
  • The conductive tissues of the upper leg can be modeled as a 40-cm-long, 12-cm-diameter cylinder of muscle and fat. The resistivi
    8·1 answer
  • Tidal forces are gravitational forces exerted on different parts of a body by a second body. Their effects are particularly visi
    5·1 answer
  • If the amount of gas in a sealed container increases, what happens to the pressure in the container
    10·2 answers
  • What is one advantage a primary source has over a secondary source? A. A primary source always includes several perspectives. B.
    5·1 answer
  • Photoelectric effect:
    9·1 answer
  • if you traveled the first 150km in 2.5 hours ,and the second part of the trip,100km in 1.4 hours.what w your average speed
    8·1 answer
  • - A person is on an elevator that moves
    8·1 answer
  • What are the worst dangers of mixing bleach and ammonia-based cleaning solutions?
    15·1 answer
  • A. How can a spinning ball have more lift than one that is not spinning?
    15·1 answer
  • Which term is the rate at which work is done? energy power joules force
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!