Answer:
Efficiency is the percent of work put into a machine by the user (input work) that becomes work done by the machine (output work).
Explanation:
It is a measure of how well a machine reduces friction.
Answer:
D. 100 cm
Explanation:
The speed of a wave is the wavelength times the frequency.
v = λf
Wave A and B have the same speed, so:
λf = λf
(50 cm) (7000 Hz) = λ (3500 Hz)
λ = 100 cm
The acceleration of the box is approximately 
Explanation:
According to Newton's second law of motion, the net force acting on the box is equal to the product between its mass and its acceleration:

where
is the net force
m = 12.0 kg is the mass of the box
a is the acceleration
The net force can be written as

where
is the applied forward force
is the friction force
Combining the two equations,

And solving for the acceleration,

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
73.72
Explanation:
For this subtraction problem, the answer or solution is expressed to the least precise of the numbers we are trying to subtract.
The least precise number is the number with the lowest significant numbers:
105.4 - 31.681
105.4 has 4 significant numbers
31.681 has 5 significant numbers
So;
105.4
- 31.681
------------------
73.719
----------------
The solution is therefore 73.72
Answer:
a) t = 2.0 s, b) x_f = - 24.56 m, Δx = 16.56 m
Explanation:
This is an exercise in kinematics, the relationship of position and time is indicated
x = 5 t³ - 9t² -24 t - 8
a) ask when the velocity is zero
speed is defined by
v =
let's perform the derivative
v = 15 t² - 18t - 24
0 = 15 t² - 18t - 24
let's solve the quadratic equation
t =
t1 = -0.8 s
t2 = 2.0 s
the time has to be positive therefore the correct answer is t = 2.0 s
b) the position and distance traveled for a = 0
acceleration is defined by
a = dv / dt
a = 30 t - 18
a = 0
30 t = 18
t = 18/30
t = 0.6 s
we substitute this time in the expression of the position
x = 5 0.6³ - 9 0.6² - 24 0.6 - 8
x = 1.08 - 3.24 - 14.4 - 8
x = -24.56 m
we see that all the movement is in one dimension so the distance traveled is the change in position between t = 0 and t = 0.6 s
the position for t = 0
x₀ = -8 m
the position for t = 0.6 s
x_f = - 24.56 m
the distance
ΔX = x_f - x₀
Δx = | -24.56 -(-8) |
Δx = 16.56 m