Each
ion contains three extra protons. Hence, the extra charge on each
=
C
Total charge = 0.035 pC
Total charge (Q) =
C
Let the number of
ions be n.
According to question:



n = 72917
Hence, the total number of ions needed to be transferred is 72917
Here is my step-by-step-work. Let me know if you have any questions! :)
Answer:
Explanation:
When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
Answer:
19.95 J
Explanation:
The center of mass of the ladder is initially at a height of:

The center of mass of the ladder ends at a height of:
=L/2
So, the work done is equal to the change in potential energy which is:
W = PE = 
now 
therefore
W = [mgL/2]×[1 - sin(theta)]
W = [(7.30)(9.81)(2.50)/2]×[1-sin(51°)]
solving this we get
W = 19.95 J