- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
I think the correct answer would be to electrolyze water (run an electric current through it) to decompose it into hydrogen and oxygen. Assuming 100% efficiency, it is said that it needs about 40kWh per kilogram of water to fully decompose it.
Answer:
During those 3.00 seconds before stopping, the car travels a distance of 6 m.
Explanation:
The simple rule of three is a tool that is used to quickly solve problems, where three pieces of information must be known, and one of them operates as an unknown to be known.
Two magnitudes are directly proportional if one magnitude increases the other also does it, and if the magnitude decreases the other in the same way.
Being a, b and c known data and x the unknown, the value that we want to know, the rule of three when the magnitudes are directly proportional is applied as follows:
a ⇒ b
c ⇒ x
So: 
In this case, knowing that a truck travels at 2 m/s, the rule of three applies as follows: if in 1 second the truck travels 2 m, in 3 seconds how much distance does it travel?

distance= 6 m
<u><em>
During those 3.00 seconds before stopping, the car travels a distance of 6 m.</em></u>
1) A negatively charged ion is chloride
2) Moving from left to right, valence electrons increase by one.
3) The period number gives information about how many energy levels it has
4) Fluorine has a charge of 1–
5) Potassium and iodine form an ionic bond
The periodic table is an arrangement of elements into groups and periods based on their periodic properties.
In the periodic table, elements are arranged in groups and periods. There are 18 groups and 8 periods.
Chlorine is in group 17, there have seven outermost electrons hence the chlorine atom needs only one more electron in order to attain a stable octet. This is done by accepting one electron to form the negatively charged chloride ion.
As we move from one period to another, one extra electron is added to the outermost shell of elements. Hence, the valence electrons increases by one.
The period to which an element belongs shows you the number of shells or energy levels in the atom of that element.
Fluorine is in group 17. One electron is needed to achieve a stable octet. When an atom accepts one electron, its charge is 1–.
Bonding based on ionic charges occurs between metals and nonmetals. Potassium is a metal of group 1 and iodine is a non metal of group 17 hence they can bond together based on their ionic charges.
Learn more:brainly.com/question/23277186