1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
11

PLEASE HELP ME, I NEED THIS DONE AS SOON AS POSSIBLE.

Physics
1 answer:
forsale [732]3 years ago
3 0
Musculoskeletal

You use your musculoskeletal system extensively during exercise. Muscle fibers contract to shorten muscles in such a way that pivots bones around joints, resulting in the swinging arms and running legs of exercise. When you exercise, your muscles need more oxygen-rich blood and glucose. Your body must shift resources away from some body systems to meet this demand.

Nervous

Your nervous system plays an important role in exercise, predicting the level of activity and then routing resources to those body systems used during exercise. Your central nervous system increases your heart rate early on in exercise. Your nervous system also signals your muscles to take up more oxygen from the bloodstream, known as oxygen uptake.

Heart

Your cardiovascular system includes your blood vessels and your heart, which pumps blood to the rest of your body through those blood vessels. Cardiac output is the amount of blood your heart pumps. According an article published in Clinics in Sports Medicine, the typical person at rest has a cardiac output of five to six liters per minute. Your cardiac output must satisfy the metabolic needs of the body during exercise by providing the body with the oxygen-rich blood it needs to perform the physical activity. Your heart rises to the challenge by increasing the force at which it pushes blood through your blood vessels. Stroke volume, or the amount of blood pumped by one portion of the heart, increases by 30 to 40 percent when you go from a resting state to peak exercise.

Circulatory System

Your body must manage blood flow to meet the demand of active muscles while still supplying other vital organs the blood they need to function. During exercise, blood flow to your brain remains relatively constant while blood flow to your kidneys and spleen is cut in half. Blood flow to the muscles of your heart increases by four times during exercise and your body increases blood flow to your skeletal muscles by about ten times during physical activity. Scientists call this increase in blood flow to the cardiovascular and skeletal muscles exercise hyperemia. You experience vasodilatation and decreased vascular resistance when you exercise, which means your blood vessels expand to allow blood to flow more efficiently. Your systolic pressure, or the top number on a blood pressure reading, rises while your diastolic pressure falls.

Respiratory

Increased muscle activity calls on the lungs to produce more oxygen to muscle cells and to remove excess carbon dioxide from the body. There is a linear relationship between cardiac output and oxygen uptake – the more blood your heart pumps, the more oxygen your muscles take from the bloodstream. Exercise causes your respiratory rate to increase four to five times over your resting rate. Tidal volume, or the amount of air you inhale and exhale in a single breath, increases five to seven times.

Endocrine

Your endocrine stimulates certain responses around the body through the use of hormones which act like chemical messengers. Insulin, a hormone, stimulates muscles into taking up glucose from the bloodstream, which the muscles use for energy. Your endocrine system releases other hormones during exercise, such as thyroxine which speeds up metabolism and epinephrine. Epinephrine is beneficial to your cardiovascular system, according to Western Michigan University.

Your entire body gets involved when you exercise, even if that physical activity involves only one or two body parts. Understanding the body systems used during exercise helps you optimize your workouts.
You might be interested in
Compare the current in the 8-ohm resistors to the current in the 4-ohm resistors.
Gemiola [76]

Answer:

a)   i₈ = 0.5 i₄,  b)   i₁₀ = 0.3 i₃,    i₁₀ = 0.8 i₈

Explanation:

For this exercise we use ohm's law

       V = i R

        i = V / R

we assume that the applied voltage is the same in all cases

let's find the current for each resistance

         

R = 4 Ω

         i₄ = V / 4

R = 8 Ω

         i₈ = V / 8

we look for the relationship between these two currents

         i₈ /i₄ = 4/8 = ½

         i₈ = 0.5 i₄

R = 3 Ω

        i₃ = V3

R = 10 Ω

         

        i₁₀ = V / 10

   

we look for relationships

       i₁₀ / 1₃ = 3/10

       i₁₀ = 0.3 i₃

       i₁₀ / 1₈ = 8/10

       i₁₀ = 0.8 i₈

7 0
2 years ago
If we add 50 Joules of thermal energy to a heat engine, and that heat engine does 30 Joules of work, how much thermal energy is
Natalka [10]

Answer:

The correct answer should be

A. 20 Joules

Explanation:

I'm taking the K12 Unit Test: Energy - Part 1 right now

7 0
2 years ago
A person on a merry go round is constantly changing direction
Salsk061 [2.6K]

Answer: yurp

Explanation:

because its spinning

7 0
2 years ago
Read 2 more answers
You and a friend each hold a lump of wet clay. Each lump has a mass of 30 grams. You each toss your lump of clay into the air, w
Vesna [10]

Answer:

\ \text{m/s}

Explanation:

u_1 = Velocity of one lump = 3x+3y-3z

u_2 = Velocity of the other lump = -4x+0y-4z

m = Mass of each lump = 30\ \text{g}

The collision is perfectly inelastic as the lumps stick to each other so we have the relation

mu_1+mu_2=(m+m)v\\\Rightarrow m(u_1+u_2)=2mv\\\Rightarrow v=\dfrac{u_1+u_2}{2}\\\Rightarrow v=\dfrac{3x+3y-3z-4x+0y-4z}{2}\\\Rightarrow v=-0.5x+1.5y-3.5z=\ \text{m/s}

The velocity of the stuck-together lump just after the collision is \ \text{m/s}.

4 0
2 years ago
An object of irregular shape has a characteristic length of L = 0.5 m and is maintained at a uniform surface temperature of Ts =
goblinko [34]

Answer:

The value of the average convection coefficient is 20 W/Km².

Explanation:

Given that,

For first object,

Characteristic length = 0.5 m

Surface temperature = 400 K

Atmospheric temperature = 300 K

Velocity = 25 m/s

Air velocity = 5 m/s

Characteristic length of second object = 2.5 m

We have same shape and density of both objects so the reynold number will be same,

We need to calculate the value of the average convection coefficient

Using formula of  reynold number for both objects

R_{1}=R_{2}

\dfrac{u_{1}L_{1}}{\eta_{1}}=\dfrac{u_{2}L_{2}}{\eta_{2}}

\dfrac{h_{1}L_{1}}{k_{1}}=\dfrac{h_{2}L_{2}}{k_{2}}

Here, k_{1}=k_{2}

h_{2}=h_{1}\times\dfrac{L_{1}}{L_{2}}

h_{2}=\dfrac{q}{T_{2}-T_{1}}\times\dfrac{L_{1}}{L_{2}}

Put the value into the formula

h_{2}=\dfrac{10000}{400-300}\times\dfrac{0.5}{2.5}

h_{2}=20\ W/Km^2

Hence, The value of the average convection coefficient is 20 W/Km².

7 0
3 years ago
Other questions:
  • Mary is 52kgs and standing on a ladder. What forces are acting on her?
    14·1 answer
  • A ball with a mass of 3kg is dropped from the top of a building this is 20m high. what is the velocity of the ball when it is 10
    14·1 answer
  • Find the magnitude of vector A = i - 2j + 3k O V14 10 O4
    7·1 answer
  • A box is at rest on a table. What can you say about the forces acting on the box?
    14·2 answers
  • What is the net force on a car if the force of friction is 15 N and the forward force due to the engine is 20 N?
    15·1 answer
  • An average sleeping person metabolizes at a rate of about 80 W by digesting food or burning fat. Typically, 20% of this energy g
    8·1 answer
  • As important as it is to plan ahead,sometimes you
    9·2 answers
  • 1. A 61-kg woman doing pull-ups lifts her body a distance of 0.32 meters in 1.8 seconds. What is the power provided by her bicep
    6·1 answer
  • Darius' boat sails into the harbor with a speed of 80m/s. After 20 seconds, Darius' boat has come to a stop at the dock. What is
    14·1 answer
  • The figure shows an uncharged conducting cubic shell and a positive point charge Q outside the shell. There are two lettered poi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!