I don't know I guess its the plate tectonics
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer : 6.3 g/cm3
Step by step explanation:
Density = mass/volume
Number of miles that marker shows when passes through town= 160 miles.
Number of miles that marker shows currently to John = 115 miles.
We need to find the distance between town and John's current location.
For the problem, we can clearly see that Town is at 160 miles away but when John passes the marker shows 115 miles.
So, it's just the difference between 160 miles and 115 miles.
In order to find that difference, we need to subtract those two numbers.
160miles - 115miles = 45 miles.
So, we could say the distance between town and John's current location is 45 miles.