Answer:
A) The event horizon, singularity, and the chute located between the two.
During Physical Change there would be a re-arrangements of atoms or molecules, changes of the arrangement may be change in the distance between atoms or molecules, change in the crystal form, .....etc
for example: water when heated it undergoes a Physical Change and turn into vapor, this means the heat cause the distance between water molecules to increase, so it transferred from the liquid form to the gas form.
NOTE that in Physical Change there is no change in the chemical structure and the material retains all its chemical properties, and no new compounds are produced.
again, A physical change is any change not involving a change in the substance's chemical identity. Matter undergoes chemical change when the composition of the substances changes: one or more substances combine or break up (as in a relationship) to form new substances.Physical changes occur when objects undergo a change that does not change their chemical nature. A physical change involves a change in physical properties. Physical properties can be observed without changing the type of matter. Examples of physical properties include: texture, shape, size, color, odor, volume, mass, weight, and density.
BUT in Chemical Change ( or Chemical Reaction ) there would be change in the chemical nature of the material undergoing a Chemical Change with the production of new compounds.
The direction of an electric field is determined from the behavior of a positive test charge that is set free in the electric field.This charge moves along a distinct vector showing the direction of the electric field Therefore the answer is b. a positive charge will move in the field.
Work= force x distance
work= 750 x 2
work =1500
power =work/time
power= 1500/ 0.3
power= 5000W
answer: b. 5000W
Answer:
250 m/s
Explanation:
The mass of the bullet, m₁ = 100 g = 0.1 kg
The mass of the gun, m₂ = 5 kg
The backward velocity of the gun, v₂ = -5 m/s
Given that the momentum is conserved, we have;
The total initial momentum = The total final momentum
The gun and the bullet are at rest, therefore, we have;
The initial momentum = 0
The total final momentum = m₁·v₁ + m₂·v₂
Where;
v₁ = The forward velocity of the bullet
Therefore, we get;
m₁·v₁ + m₂·v₂ = 0
0.1 kg × v₁ + 5 kg × (-5 m/s) = 0
0.1 kg × v₁ = 5 kg × 5 m/s
v₁ = (5 kg × 5 m/s)/(0.1 kg) = 250 m/s
The forward velocity of the bullet, v₁ = 250 m/s