The main reason is becouse these people are over 200 pounds and no mater how strong you are arms arnt ment to keep you up thanks.
Answer:
The ratio of initial to final speed of sound is given as 1.28.
Explanation:
As per the thermodynamic relation of isentropic expansion

Here
is the pressure at point 1 which is given as 2.2 MPa
is the temperature at point 1 which is given as 77 °C or 273+77=350K
is the pressure at point 1 which is given as 0.4 MPa
is the temperature at point 2 which is to be calculated- k is the ratio of specific heats given as 1.4
Substituting values in the equation

As speed of sound c is given as

for initial to final values it is given as

As values of k and R is constant so the ratio is given as

Substituting values give

So the ratio of initial to final speed of sound is 1.28.
To develop this problem it is necessary to apply the concept related to the speed of sound waves in fluids.
By definition we know that the speed would be given by

Bulk modulus
Density of air
From the expression shown above we can realize that the speed of sound is <em>inversely proportional</em> to the fluid in which it is found, in this case the air. When the density increases, the speed of sound decreases and vice versa.
According to the statement then, if the density of the air decreases due to an increase in temperature, we can conclude that the speed of sound increases when the temperature increases. <u>They are directly proportional.</u>
Because you have to have energy to have work.
Most mutualisms involve partnerships between ectothermic organisms. Therefore, they are particularly sensitive to changes in temperature, and most will be strongly affected by climate change. A mutualism will retain stability and function only under a particular set of environmental conditions.