1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
3 years ago
10

Consider the discussion in our Devore reading in this unit involving an important distinction between mean and median that uses

the concept of a trimmed mean to highlight an important continuum between the two. Presuming that the mean and median are different values for a distribution, the mean can be taken to indicate a 0% trim, and the median can be taken to approach a 50% trim (with effectively 100% of the values removed). These two values define a continuum of trimmed mean values that would fall between the two. Discuss why the mean and median of the distribution always approach each other as we take trimmed means at higher and higher percentages (e.g., 10%, 20%, 30% ...). In particular, describe what is happening to the kurtosis and skewness of the distribution as we trim off more and more data. Speculate on whether or not you might expect to see an optimum point in that process at some value between the mean and median. (Hint: You should!) Why might this matter?
Mathematics
1 answer:
Levart [38]3 years ago
3 0

Answer:

Step-by-step explanation:

A trimmed mean is a method of averaging that removes a small designated percentage of the largest and smallest values before calculating the mean. After removing the specified observations, the trimmed mean is found using a standard arithmetic averaging formula. The use of a trimmed mean helps eliminate the influence of data points on the tails that may unfairly affect the traditional mean.

trimmed means provide a better estimation of the location of the bulk of the observations than the mean when sampling from asymmetric distributions;

the standard error of the trimmed mean is less affected by outliers and asymmetry than the mean, so that tests using trimmed means can have more power than tests using the mean.

if we use a trimmed mean in an inferential test , we make inferences about the population trimmed mean, not the population mean. The same is true for the median or any other measure of central tendency.

I can imagine saying the skewness is such-and-such, but that's mostly a side-effect of a few outliers, the fact that the 5% trimmed skewness is such-and-such.

I don't think that trimmed skewness or kurtosis is very much used in practice, partly because

If the skewness and kurtosis are highly dependent on outliers, they are not necessarily useful measures, and trimming arbitrarily solves that problem by ignoring it.

Problems with inconvenient distribution shapes are often best solved by working on a transformed scale.

There can be better ways of measuring or more generally assessing skewness and kurtosis, such as the method above or L-moments. As a skewness measure (mean ? median) / SD is easy to think about yet often neglected; it can be very useful, not least because it is bounded within [?1,1][?1,1].

i expect to see the optimum point in that process at some value between the mean and median.

You might be interested in
If Sarah is 24 years younger than her mother and if the sum of their ages is 68, how old is Sarah?
irina [24]
Use subtraction the answer is 44
4 0
3 years ago
Mr Teo wants to buy an oven. Which shop sells the oven at a lower price? Show your working clearly.​
Oliga [24]

Answer:

Shop B

Step-by-step explanation:

Hi there!

To solve this question, we can find the new prices of each oven and identify which one is cheaper.

<u>Shop A</u>

Usual price: $190

Discount: 15%

First, we must subtract the discount percent from 100:

100 - 15 = 85

Therefore, the new price of the product will be 85% of the original price. Find 85% of $190:

190 × 0.85

Therefore, the new price is $161.50.

<u>Shop B</u>

Usual price: $200

Discount: 20%

Again, subtract 20 from 100:

100 - 20 = 80

This means that the new price of the oven is 80% of the original price:

200 × 0.8 = 160

Therefore, the new price is $160.

Because a $160 oven is cheaper than a $161.50 oven, Shop B sells the oven at a lower price.

I hope this helps!

6 0
2 years ago
Read 2 more answers
A square has a side length of 21 + 11s. Select TWO equivalent
Misha Larkins [42]

Answer:

I choose option c hope it helps

4 0
3 years ago
What is 50/90 in simplest form fraction
lisabon 2012 [21]
5/9, is what it should be
8 0
3 years ago
If the sum of the roots of the equation 3x² + kx + 1 = 0 is 7. then what the value of k​
koban [17]

Answer:

The value of k is -21

Step-by-step explanation:

ax² + bx + c = 0

Sum of the roots = -b/a

3x² + kx + 1 = 0

= sum of the roots = -k/3

-k/3 = 7

Now, Multiply both side by (-3) we get,

(-3)-k/3 = 7(-3)

k = -21

Thus, The value of k is -21

<u>-TheUnknownScientist</u><u> 72</u>

7 0
2 years ago
Other questions:
  • PLEASE HELP! 98 POINTS!
    15·2 answers
  • PLEASE PLEASE PLEASE HELP
    12·2 answers
  • PLEASEEEEEEEEEEEEEEEEEEEEEE HELP I DONT UNDERSTAND IT
    13·1 answer
  • adam had used 84 wihite squares 20 more white than yellow and 15 more red than yellow. what is the number of red squares adam us
    12·1 answer
  • 9. A triangle is dilated using a scale factor of 4. The image is then dilated
    14·1 answer
  • A trash can is shaped like a cylinder. The radius of the trash can is 12 inches, and the height of the container is 31.5 inches.
    5·1 answer
  • 10 students are competing in a dance competition. How many was can you award first, second, and third place?
    15·1 answer
  • WILL GIVE BRAINLYIST <br> what is 2+2x4(6+5)-7
    8·2 answers
  • Match each algebraic expression to the correct verbal expression.
    8·1 answer
  • What is the distance between (0,-8) and (3,-2) ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!