Great Question! I happened to be a physics nerd!
Answer:
C. Two hydrogen nuclei, each with only one proton, fuse to form deuterium, a form of hydrogen with one proton.
MAKE SURE TO SEE EXPLANATION!
Explanation:
In the core of the Sun, or any other main sequence star, there is no single fusion process. Instead, complex sequences of processes occur to make helium nuclei from hydrogen nuclei (i.e. protons). The proton-proton chain provides for the majority of energy generation in stars with masses less than that of the Sun. One difficulty in creating a helium nucleus (two protons and two neutrons) is that there are only protons to begin with. Some protons must be turned into neutrons in some way. The first step is to combine two protons to form a deuterium nucleus (also known as a deuteron). That's a hefty hydrogen nucleus with one proton and one neutron. Such a proton-proton contact is highly unlikely, and it has never been detected in a laboratory. Fortunately, the Sun's core is incredibly hot and dense, with an incredible number of protons packed inside. Even a low likelihood event will occur every now and again. Along with each deuteron, a positron (an "anti-electron") and a neutrino are created. Because the Sun's core is plasma, there are a lot of free electrons, thus the positron doesn't live long until it and an electron collide and annihilate, resulting in gamma radiation. The deuteron then interacts with a proton to form a helium 3 nucleus. That is a high-probability interaction, and it occurs swiftly. Two helium 3 nuclei join in the third phase to generate a helium 4 ("regular" helium) nucleus and a proton. Branch I of the proton-proton (p-p) chain is responsible for this. Another stage is required because reactions between helium 3 and helium 4 nuclei are possible. There are two conceivable reactions (named Branch II and Branch III), and I'll save you the gory details. It gets much more complicated since theoretical calculations indicate that a reaction between a helium 3 nucleus and a proton is feasible — Branch IV. This reaction has an incredibly low likelihood of occurring, far lower than the Branch I reaction, thus it must be exceedingly rare. The Carbon-Nitrogen-Oxygen (CNO) Cycle is another method for reducing hydrogen to helium. It does not generate much energy in the Sun, but it is the principal energy generation mechanism in larger stars.
Answer
given,
focal length of lens A = 5.77 cm
focal length of lens B= 27.9 cm
flies distance from mirror = 11.3 m
now,
Using lens formula
q =11.79 cm
image of lens A is object of lens B
distance of lens = 59.9 - 11.79 = 48.11
now, Again applying lens formula
q' =66.41 cm
hence, the image distance from the second lens is equal to q' =66.41 cm
Answer:
the heavier skater has less momentum
hope it is helpful to you
Answer:
I think it is the answer A
Explanation:
Alcohol won't stimulate the central nervous system and the peripheral nervous system because the fact that the brain and the nervous system are affected can lead to many consequences: disorders of vision, hearing, motor coordination ...
Alcohol will therefore have a damaging effect, it will therefore sedate the nervous system.
A negative ion is a atom that has an extra electron, but the same # of protons