Answer:
= 2/3
Explanation:
The yuong modulus of a rod is defined as the relationship between the tensile strength and the strain
Y =
let's use the subscript "o" for rod A
I =
tells us that rod B has
A = 3 A₀
L = 2 L₀
we substitute
Y =
Y =
y = ⅔
substituting the value of Y₀
Y = ⅔ Y₀
= 2/3
Answer:
ΔH°comb=-5899.5 kJ/mol
Explanation:
First, consider the energy balance:
Where
is the calorimeter mass and
is the number of moles of the samples;
is the combustion enthalpy. The energy balance says that the energy that the reaction release is employed in rise the temperature of the calorimeter, which is designed to be adiabatic, so it is suppose that the total energy is employed rising the calorimeter temperature.
The product
is the heat capacity, so the balance equation is:

So, the enthalpy of combustion can be calculated:

I will be happy to solve any doubt you have.
To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are


The radius then would be

And

PART A ) For the Surface Area we have that,

Deriving we have that the change in the Area is equivalent to the maximum error, therefore

Maximum error:


The relative error is that between the value of the Area and the maximum error, therefore:


PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so


Therefore the Maximum Error would be,



Replacing the value for the radius


And the relative Error



Answer:
Mass of the disk will be 2.976 kg
Explanation:
We have given force F = 45 N
Radius of the disk r = 0.12 m
Angular acceleration 
We know that torque 
And 
So
, here I is moment of inertia
So 

We know that moment of inertia 
So 
m = 2.976 kg
Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R