Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
A = .3*g = 2.94 m/s²
<span>t = v/a = 9/2.94 = 3.061 sec </span>
<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
Answer:
in this video waves are coming up for the BOTTOM to the top of the sandbar
Answer:
1.42
Explanation:
<em> got it right on my homework </em>