This is best explained through the use of an optics diagram, this is a little too complicated to explain in a short answer, and as I can't draw an appropriate diagram in this answer, I will point you to this excellent resource which explains what you have asked very well!
Go onto the BBC website (you should have access to it even if you aren't in the UK) and paste this after the BBC url,
/bitesize/intermediate2/physics/waves_and_optics/image_formation_from_lens/revision/1/
Answer:
the child is 1.581 m far from the fence
Explanation:
The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.
From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

---- (1)
the equation of the motion y is :






By using the quadratic formula, we have;

where;
a = 4.9, b = -5.14 c = 1







In as much as the ball is traveling upward, then we consider t= 0.258sec.
From equation (1)




Thus, the child is 1.581 m far from the fence
Answer:
nsnskdkxlxnckcvdodhxkccskzjxvxkxhLsbshsbHzv
Answer:
I think the reflection of light off of a shiny surface is the answer... Hope this helps
Explanation:
Answer:
Glow
Explanation:
Actually, it is the air in front of the meteoroid that heats up. The particle is traveling at speeds between 20 and 30 kilometers per second. It compresses the air in front, causing the air to get hot. The air is so hot it begins to glow — creating a meteor - the streak of light observed from Earth.
Hope this helped!