Answer:
As light travels in a straight line at a constant speed, it's acceleration is <u>0 m/s²</u>.
There is no rate of change of speed, so there is no acceleration.
- <u>0 m/s²</u> is the right answer.
Answer:
I believe a wedge and a lever
Explanation:
Answer:
Ruko zara kuch Time dedo na please
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Well depending on what current the heater pulls im going to assume about 13, and 13A for the hair dryer, thats 26A on the 40A circuit.
I dont see how a lightbulb could overload the circuit.
Anyway, assuming the circuit is overloaded by some really big heater- the circuit would trip, the fuse would go and remain off. Most houses are fitted with seperate circuits for lights and sockets, so the light may remain on depending on the breaker board. - the reason for them all being able to run with the sudden overload may be due to a surge.
One solution to this is not to put such a large heater on the circuit with other appliances.
Another may be to dry your hair in the dark