To determine the centroid of the object first moment of area is used.
To predict the resistance of a shape to bending and deflection which are directly proportional, second moment of area is used.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:
A.Moving electric charges (electrons in a circuit) creates a magnetic field and
a magnetic field can cause an electric charge to move (electricity).
Explanation:
Is the most intensely studied celestial feature. It has also help revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. It is also the closest large star-forming region to Earth. The Orion Nebula is an enormous cloud of gas and dust, is located in our galaxy (Milky Way).
Answer:
Explanation:
Given
Sphere of Radius R
Suppose mass of block is m
At any instant \theta Normal reaction(N) and weight(mg) is acting such that
, where v is velocity of block at any angle \theta
When block is just about to leave then N=0
therefore

-------------------1
Also by conserving Energy we get
Potential Energy=kinetic Energy of block

here h=vertical distance traveled by block
From diagram



-----------------2
From 1 and 2



Thus from this value of h is


