Electrons are transferred sequentially between the two photosystems, with photosystem I acting to generate NADPH and photosystem II acting to generate ATP. The pathway of electron flow starts at photosystem II, which is homologous to the photosynthetic reaction center of R. viridis already described.
We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
I think the correct answer from the choices listed above is option A. The kinetic energy after the perfectly inelastic collision would be zero Joules. <span>A </span>perfectly inelastic collision<span> occurs when the maximum amount of kinetic energy of a system is lost. Hope this answers the question.</span>
Answer:
The primary effects of earthquakes are ground shaking, ground rupture, landslides, tsunamis, and liquefaction. Fires are probably the single most important secondary effect of earthquakes.
Explanation: