Answer:
Power is 1061.67W
Explanation:
Power=force×distance/time
Power=65×9.8×15/9 assuming gravity=9.8m/s²
Power=3185/3=1061.67W
Answer:
The statement "If a positively charged rod is brought close to a positively charged object, the two objects will repel
" applies to electric charges.
Explanation:
There are only two types of electric charges. Both having own magnitude but different charge.
1. Positive charge
2. Negative charge
Like charges repel each other and opposite charges always attract each other.
When a positively charged rod is brought close to a positively charged object, the rod and the object will repel.
Answer:
<em>-z axis</em>
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.
Assuming that the object starts at rest, we know the following values:
distance = 25m
acceleration = 9.81m/s^2 [down]
initial velocity = 0m/s
we want to find final velocity and we don't know the time it took, so we will use the kinematics equation without time in it:
Velocity final^2 = velocity initial^2 + 2 × acceleration × distance
Filling everythint in, we have:
Vf^2 = 0^2 + (2)(-9.81)(-25)
The reason why the values are negative is because they are going in the negative direction
Vf^2 = 490.5
Take the square root of that
Final velocity = 22.15m/s which is answer c
Answer:
28 degree C
Explanation:
We are given that




We have to find the temperature on a spring day when resistance is 215.1 ohm.
We know that

Using the formula




Hence, the temperature on a spring day 28 degree C.