Answer:
<h3>
f(x) = - 3(x + 8)² + 2</h3>
Step-by-step explanation:
f(x) = a(x - h)² + k - the vertex form of the quadratic function with vertex (h, k)
the<u> axis of symmetry</u> at<u> x = -8</u> means h = -8
the <u>maximum height of 2</u> means k = 2
So:
f(x) = a(x - (-8))² + 2
f(x) = a(x + 8)² + 2 - the vertex form of the quadratic function with vertex (-8, 2)
The parabola passing through the point (-7, -1) means that if x = -7 then f(x) = -1
so:
-1 = a(-7 + 8)² + 2
-1 -2 = a(1)² + 2 -2
-3 = a
Threfore:
The vertex form of the parabola which has an axis of symmetry at x = -8, a maximum height of 2, and passes through the point (-7, -1) is:
<u>f(x) = -3(x + 8)² + 2</u>
Answer: C
Step-by-step explanation:
and 
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4

= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56
Answer:
107
Step-by-step explanation:
Answer:
n=28
Step-by-step explanation:
4+3
7+5
12+7
19+9
the pattern adds two to the last number