Answer: 177g
Explanation:
Aw 12 = 6.02214076*10^23 atoms
mass = 12*88.70^23/6.022*10^23
Answer:
Explanation:
Hello!
In this case, given the chemical reaction:
In such a way, given the volumes and molarities of each reactant, we can compute the moles of produced iron (III) hydroxide by each of them, via the 3:1 and 1:1 mole ratios:
It means that the sodium hydroxide is the limiting reactant and 0.00833 moles of iron (III) hydroxide are produced; thus, the required mass is:
Nitrogen is a non-metal and aluminum is a metal so the bond would be ionic.
We know that molarity = mol/L, so:
1.5 M = x mol/0.345 L
1.5 M * 0.345 L = x mol => 0.5175 mol
0.5175 mol/0.250 L = 2.07 M
Your new molarity of the solution will be 2.07 M.
Answer:
The major product is 2-methyl-2-pentene [ CH₃-CH₂-CH=C(CH₃)₂ ] and a minor product 2-methyl-1-pentene [ CH₃-CH₂-CH₂-C(CH₃)=CH₂ ].
Explanation:
Dehydration reaction is a reaction in which a molecule loses a water molecule in the presence of a dehydrating agent like sulfuric acid (H₂SO₄).
<u>Dehydration reaction of 2-methyl-2-pentanol</u> gives a major product 2-methyl-2-pentene and a minor product 2-methyl-1-pentene.
CH₃-CH₂-CH₂-C(CH₃)₂-OH (2-methyl-2-pentanol)→ CH₃-CH₂-CH=C(CH₃)₂ (2-methyl-2-pentene, major) + CH₃-CH₂-CH₂-C(CH₃)=CH₂ (2-methyl-1-pentene, minor)
<u>Since more substituted alkene is more stable than the less substituted alkene. So, the trisubstituted alkene, 2-methyl-2-pentene is more stable than the disubstituted alkene, 2-methyl-1-pentene.</u>
<u>Therefore, the trisubstituted alkene, 2-methyl-2-pentene is the major product and the disubstituted alkene, 2-methyl-1-pentene is the minor product.</u>