Answer:
The answer which is a calculation can be found as an attached document
Explanation:
Answer:
ηa=0.349
ηb=0.345
Explanation:
The enthalpy and entropy at state 3 are determined from the given pressure and temperature with data from table:

The quality at state 4 is determined from the condition
and the entropies of the components at the condenser pressure taken from table:

The enthalpy at state 4 then is:

Part A
In the case when the water is in a saturated liquid state at the entrance of the pump the enthalpy and specific volume are determined from A-5 for the given pressure:

The enthalpy at state 2 is determined from an energy balance on the pump:

=346.67 kJ/kg
The thermal efficiency is then determined from the heat input and output in the cycle:

Part B
In the case when the water is at a lower temperature than the saturation temperature at the condenser pressure we look into table and see the water is in a compressed liquid state. Then we take the enthalpy and specific volume for that temperature with data from and the saturated liquid values:

The enthalpy at state 2 is then determined from an energy balance on the pump:

=299.79 kJ/kg
The thermal efficiency in this case then is:

Answer:
I got u
Explanation:
this will help because using a electric object would be faster and more efficient than to use a manual thing
Answer:
<u><em>note:</em></u>
<u><em>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</em></u>
Answer:
The relationship between power, energy, and time can be described by the following equation : P = Δ E s y s Δ t. P is the average power output, measured in watts (W) ΔEsys is the net change in energy of the system in joules (J) - also known as work. Δt is the duration - how long the energy use takes - measured in seconds (s).
Explanation: