1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
15

A car accelerates from O to 60. miles per hour in 5.2 seconds. Calculate acceleration in m/s seconds. Calculate acceleration in

m/s^2.
Engineering
1 answer:
DochEvi [55]3 years ago
7 0

Answer:

a=5.515\frac{m}{s^{2} }

Explanation:

The first thing we will do is convert the units. Miles per hour to meters per second.

1 mile=1609.34 mts.

1 hora=3600 segundos

Performing the operations

60\frac{mile}{h}=\frac{(60*1609.34)}{3600}\frac{m}{s}=26.822\frac{m}{s}

Now, we will use the acceleration formula

a=\frac{v}{t}

Where v = speed and t = time

Substituting the values ​​of t=5.2s

a=\frac{v}{t} =\frac{26.822\frac{m}{s} }{5.2s} =5.15\frac{m}{s^{2} }

You might be interested in
A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s (pressure, temperature and velocity). It discharges liquid-v
adelina 88 [10]

Answer:

The power produced by the turbine is 23309.1856 kW

Explanation:

h₁ = 3755.39

s₁ = 7.0955

s₂ = sf + x₂sfg  =

Interpolating fot the pressure at 3.25 bar gives;

570.935 +(3.25 - 3.2)/(3.3 - 3.2)*(575.500 - 570.935) = 573.2175

2156.92 +(3.25 - 3.2)/(3.3 - 3.2)*(2153.77- 2156.92) = 2155.345

h₂ = 573.2175 + 0.94*2155.345 = 2599.2418 kJ/kg

Power output of the turbine formula =

Q - \dot{W } = \dot{m}\left [ \left (h_{2}-h_{1}  \right )+\dfrac{v_{2}^{2}- v_{1}^{2}}{2} + g(z_{2}-z_{1})\right ]

Which gives;

560 - \dot{W } = 8\left [ \left (2599.2418-3755.39  \right )+\dfrac{15^{2}- 60^{2}}{2} \right ]

= -8*((2599.2418 - 3755.39)+(15^2 - 60^2)/2 ) = -22749.1856

- \dot{W } = -22749.1856 - 560 = -23309.1856 kJ

\dot{W } = 23309.1856 kJ

Power produced by the turbine = Work done per second = 23309.1856 kW.

5 0
3 years ago
The yellow rectangle area is 25% (or 1/4) the area of the blue rhombus. The height (H) of the yellow rectangle is twice as long
Kitty [74]

Answer:

I don't know sry

Explanation:

6 0
3 years ago
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
2 years ago
Technician A says that mechanical shifting controls can wear out over time. Technician B says that vacuum control rubber diaphra
diamong [38]

Based on the information, both technician A and technician B are correct.

<h3>How to depict the information?</h3>

From the information given, Technician A says that mechanical shifting controls can wear out over time.

Technician B says that vacuum control rubber diaphragms can deteriorate over time.

In this case, both technicians are correct as the information depicted is true.

Learn more about technicians on:

brainly.com/question/1548867

#SPJ12

8 0
2 years ago
Other questions:
  • Convection is a function of temperature to the fourth power. a)-True b)-False
    9·1 answer
  • Please Help It's really Important
    12·1 answer
  • A hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.46 kg/s where it is mixed with a stream of cold wa
    14·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • The following displacement (cm), output (V) data have been recorded during a calibration of an LVDT. Displacement (cm), output (
    15·1 answer
  • The information on a can of pop indicates that the can contains 360 mL. The mass of a full can of pop is 0.369 kg, while an empt
    14·1 answer
  • What are practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectio
    13·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Answer the question faster please
    7·1 answer
  • Provide two programming examples in which multithreading provides better performance than a single-threaded solution. Provide on
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!