The percent yield of the reaction : 89.14%
<h3>Further explanation</h3>
Reaction of Ammonia and Oxygen in a lab :
<em>4 NH₃ (g) + 5 O₂ (g) ⇒ 4 NO(g)+ 6 H₂O(g)</em>
mass NH₃ = 80 g
mol NH₃ (MW=17 g/mol):

mass O₂ = 120 g
mol O₂(MW=32 g/mol) :

Mol ratio of reactants(to find limiting reatants) :

mol of H₂O based on O₂ as limiting reactants :
mol H₂O :

mass H₂O :
4.5 x 18 g/mol = 81 g
The percent yield :

The new pressure : P₂ = 1038.39 mmHg
<h3>Further explanation</h3>
Given
1.5 L container at STP
Heated to 100 °C
Required
The new pressure
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
So P₁ = 1 atm = 760 mmHg
T₁ = 273 K
T₂ = 100 °C+273 = 373 K
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

Input the value :
P₂=(P₁.T₂)/T₁
P₂=(760 x 373)/273
P₂ = 1038.39 mmHg
The thermochemical equation is the chemical equation including the net change of enthalpy (heat).
The chemical equation for the decomposition of methanol to form methane and oxygen is:
2CH3OH --> 2CH4 + O2
The thermochemical equation is:
2CH3OH ---> 2CH4 + O2 - 252.8 kJ
Note that the heat is placed as negative at the right side because it is absorbed during the decomposition, so the environment will have 252.8 kJ less per each mole of O2 produced.
You can equivalently write:
2CH3OH + 252.8 kJ --> 2CH4 + O2
Answer:
The unfiltered polluted water is not clear and is yellowish in color. The filtered polluted water is clear with a little bit of yellow color. The pH readings are beyond the range in which organisms can grow. Based on these observations, I can conclude that even though water may look clean, it could actually not be clean or it can still be harmful to living things.