Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to

Answer:
The solubility of gases in liquids decreases with increasing temperature. Conversely, adding heat to the solution provides thermal energy that overcomes the attractive forces between the gas and the solvent molecules, thereby decreasing the solubility of the gas; pushes the reaction in Equation 4 to the left
Answer:
Kinetic energy is directly proportional to mass
Explanation:
Kinetic energy is directly proportional to the mass of an object and also directly proportional to the square of the velocity of that object:

Notice that if we keep velocity constant and only increase the mass of a object, the kinetic energy of that object would increase, as we've already emphasized the direct relationship between the kinetic energy term and the mass term.
Let's take a simple example: assume that object 1 and object 2 are both moving at the same velocity but object 1 has a much lower mass than object 2. According to the equation, object 1 has lower kinetic energy. This object can then transform all of its kinetic energy into some other form, say, heat the ground. The heat transferred will be significantly lower than by the object 2 moving at the same velocity but having a much greater mass.
Helium
Remember: electron filling of atomic shell ...
The element which have electron in the lowest quantum shell will have the smallest atomic radius\
He:1s1 (Helium)
H:1s2 (hydrogen)
A!
stay safe and have a great day<8