Answer:
93.5 moles N₂
Explanation:
To find the moles, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = number of moles
-----> R = constant (0.0821 atm*L/mol*K)
-----> T = temperature (K)
You can plug the given values into the equation and simplify to find moles. The final answer should have 3 sig figs to match the lowest number of sig figs among the given values.
P = 95.0 atm R = 0.0821 atm*L/mol*K
V = 224 L T = 2773 K
n = ?
PV = nRT
(95.0 atm)(224 L) = n(0.0821 atm*L/mol*K)(2773 K)
21280 = n(227.6633)
93.5 = n
A , i think because pure water won't dissolve the powder fast.
Answer:
Regional metamorphic rocks form from other rocks (protoliths) by changes in mineralogy and texture in response to changing physical conditions (temperature, lithostatic pressure, and, in most cases, shear stress). Regional metamorphism occurs over broad areas in the lithosphere, possibly influenced by the heat supply. Regional metamorphic rock results from regional metamorphism and usually develops a flaky texture. These changes are essentially solid-state reactions, but very often a fluid phase is present, either participating in the reaction or as a reaction medium. Many regional metamorphic rocks have a chemical composition that is very similar to that of their sedimentary or igneous precursors, with the exception of removal or addition of volatiles (mainly H2O and CO2). This type of behavior is termed isochemical metamorphism. Metamorphism may also take place as a result of a change in chemical environment; this may occur by transport of elements between chemically contrasting rock types (e.g., formation of calc-silicate minerals at a quartzite–marble contact) or by circulation of fluids that dissolve some substances and precipitate others. This process of significant chemical change during metamorphism is known as allo-chemical metamorphism or metasomatism, and rocks formed in this manner are metasomatic rocks. Metasomatism is, however, mostly of local significance, and the total volume of metasomatic rocks in regional metamorphic terranes is rather minor. The distinction between metasomatism and is chemical metamorphism is also a matter of scale. On the scale of individual grains, mass transport takes place during all phase transformations; on the scale of a thin section, it is probably the rule for regional metamorphism; on the scale of a hand (sized) specimen, it can be observed frequently; and on a larger scale, it is the exception.
Hope this Helps!
Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.

About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.

Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.
Transform boundaries are places where plates slide sideways past each other. At transform boundaries lithosphere is neither created nor destroyed. Many transform boundaries are found on the sea floor, where they connect segments of diverging mid-ocean ridges. California's San Andreas fault is a transform boundary. So its true