1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
8

A simple generator is used to generate a peak output voltage of 25.0 V . The square armature consists of windings that are 7.0 c

m on a side and rotates in a field of 0.490 T at a rate of 60.0 rev/s . Part A How many loops of wire should be wound on the square armature
Physics
1 answer:
4vir4ik [10]3 years ago
6 0

Answer:

<h3>The 28 loops wound on the square armature</h3>

Explanation:

Peak output voltage \epsilon _{peak}  = 25 V

Area of square armature A = (7 \times 10^{-2} )^{2}  = 49 \times 10^{-4}

Magnetic field B = 0.490 T

Angular frequency \omega = 2\pi f = 2 \pi \times 60 = 120\pi

According to the law of electromagnetic induction,

     \epsilon _{peak} = NBA \omega

Where N = number of loops of wire.

  N = \frac{25}{49 \times 10^{-4} \times 0.49 \times 120\pi  }

  N = 27.6 ≅ 28

Thus, 28 loops of wire should be wound on the square armature.

You might be interested in
A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The
Yuki888 [10]

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

5 0
3 years ago
Describe each of Newton’s Laws of Motion in ice skating. What can you design/develop to improve ice skating?
denis23 [38]

Newton's three laws of motion can be used to describe the motion of the ice skating.

<h3>Newton's first law of motion</h3>

Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.

  • Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.

<h3>Newton's second law of motion</h3>

Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.

  • Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.

<h3>Newton's third law of motion</h3>

This law states that action and reaction are equal and opposite.

  • Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.

Learn more about Newton's law here: brainly.com/question/3999427

3 0
3 years ago
Read 2 more answers
One mol of a perfect, monatomic gas expands reversibly and isothermally at 300 K from a pressure of 10 atm to a pressure of 2 at
Zolol [24]

Answer:

Explanation:

Given

1 mole of perfect, monoatomic gas

initial Temperature(T_i)=300 K

P_i=10 atm

P_f=2 atm

Work done in iso-thermal process=P_iV_iln\frac{P_i}{P_f}

P_i=initial pressure

P_f=Final Pressure

W=10\times 2.463\times ln\frac{10}{2}=39.64 J

Since it is a iso-thermal process therefore q=w

Therefore q=39.64 J

(b)if the gas expands by the same amount again isotherm-ally and irreversibly

work done is=P\Delta V

V_1=\frac{RT_1}{P_1}=\frac{1\times 0.0821\times 300}{10}=2.463 L

V_2=\frac{RT_2}{P_2}=\frac{1\times 0.0821\times 300}{2}=12.315 L

\Delta W=1\times (12.315-2.463)=9.852 J

\Delta q=\Delta W=9.852 J

\Delta U=0

8 0
3 years ago
A circuit contains a single 220 pF capacitor hooked across a battery. It is desired to store three times as much energy in a com
Anettt [7]

Answer

The capacitor should be connected in parallel as parallel connection gives the arithmetic sum of capacitance which will give a corresponding sum of energy while capacitors in series gives the sum of the reciprocal if the individual capacitance

7 0
3 years ago
a 10.0 kg sphere is released from rest in an ocean. as it falls, the water applies a resistive force r
dimaraw [331]

The calculated coefficient of kinetic friction is 0.33125.'

The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.

given mass of the block=10 kg

spring constant k= 2250 Nm

now according to principal of conservation of energy we observe,

the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.

mgh= μ (mgl) +1/2 kx²

10 x 10 x 3= μ(600) +(1125) (0.09)

μ(600) =300 - 101.25

μ = 198.75÷600

μ =0.33125

The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)

Learn more about kinetic friction here-

brainly.com/question/13754413

#SPJ4

4 0
2 years ago
Other questions:
  • A fox sees a piece of carrion men thrown from a Hawk's Nest and rushes to snatch it. The best is 14.0m high and the carrion is t
    15·1 answer
  • A box is sitting stationary on a ramp that is 42° to the horizontal. The box has a gravitational force of 112.1 N. What is the m
    5·2 answers
  • Based on this passage, what is campylobacter?
    7·2 answers
  • The strong crystal structure of an ionic compound is one of the main reasons why ionic compounds have a __________ melting point
    12·1 answer
  • At the same instant that a 0.50-kg ball is dropped from 25m above Earth,? At the same instant that a 0.50-kg ball is dropped fro
    15·1 answer
  • A cylinder contains 3.0 L of oxygen at 310 K and 2.5 atm. The gas is heated, causing a piston in the cylinder to move outward. T
    9·1 answer
  • What percentage of an iron anchor’s weight will be supported by buoyant force when submerged in salt water?
    15·1 answer
  • What does this poem mean:
    9·1 answer
  • Give ten (10) words related to health on the grid. Write your answer on<br> a separate sheet.
    8·1 answer
  • When a pulse travels on a taut string, does it always invert upon reflection? Explain.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!