the answer is the first one because neutrons and protons are in the middle of an atom. plz give me brainliest
<span>From Ohm's law. V = IR. Where R = 2 Ohms. To calculate the induced current I; We need to calculate the electromotive force or voltage, V. From Faraday's law induced EMF = (The rate of change of magnetic flux density x Area)/ (changein time). Or EMF = BA/t. Where B = Bf - Bi. And BA = Bf* A - Bi* A.
Bf = 2.00 and Bi = 0.500 and t = 0.93s and the area, A = 7.1 cm^2 is 0.000071 m^2. 2
So Emf = 2.00 (0.000071) - 0.500(0.000071) /(0.93) = 1.0654 * 10^(-4)/ 0.93 = 1.1415 * 10^(-4).
Substituting into ohms law, we have,
I = (1.1415 * 10^(-4)) / 2 = 0.57075 * 10^(-4)</span>
Answer:
Following are the solution to this question
Explanation:
please find the complete question in the attached file.
In point a:
The answer is "bottom".
In point b:
Using formula:


By subtracting the value of absolute zero, also know as adding 273.15!
Answer:
-2000 N
Explanation:
To solve the problem, we can use the impulse theorem, which states that the impulse is equal to the change in momentum of the car:

where
F is the average breaking force
is the stopping time
m = 1000 kg is the mass of the car
is the change in velocity of the car
Solving the equation for F,
