1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
13

PLS ANSWER I WILL GIVE BRAINLIST AND A THANK YOU

Mathematics
2 answers:
romanna [79]3 years ago
7 0

Answer:

x= 6 degrees

Step-by-step explanation:

x+x+54 = 90

2x+54 = 90

x= 90- 54 /2

x =6

sergejj [24]3 years ago
3 0

Answer:

x = 6

Step-by-step explanation:

90 - 54 = 36

x + 5x = 6x

36 + 6x = 90

90 - 36 = 6x

36/6x = 6

x = 6

You might be interested in
Select all the true statements.
nexus9112 [7]

Answer:

i think its 1 and 2

4 0
2 years ago
Read 2 more answers
SOMEONE !!! I’ll mark brainliest !!
ASHA 777 [7]

Answer:

60

Step-by-step explanation:

45/9=5 an 12x5=60

jus trust

7 0
3 years ago
Read 2 more answers
find the centre and radius of the following Cycles 9 x square + 9 y square +27 x + 12 y + 19 equals 0​
Citrus2011 [14]

Answer:

Radius: r =\frac{\sqrt {21}}{6}

Center = (-\frac{3}{2}, -\frac{2}{3})

Step-by-step explanation:

Given

9x^2 + 9y^2 + 27x + 12y + 19 = 0

Solving (a): The radius of the circle

First, we express the equation as:

(x - h)^2 + (y - k)^2 = r^2

Where

r = radius

(h,k) =center

So, we have:

9x^2 + 9y^2 + 27x + 12y + 19 = 0

Divide through by 9

x^2 + y^2 + 3x + \frac{12}{9}y + \frac{19}{9} = 0

Rewrite as:

x^2  + 3x + y^2+ \frac{12}{9}y =- \frac{19}{9}

Group the expression into 2

[x^2  + 3x] + [y^2+ \frac{12}{9}y] =- \frac{19}{9}

[x^2  + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}

Next, we complete the square on each group.

For [x^2  + 3x]

1: Divide the coefficient\ of\ x\ by\ 2

2: Take the square\ of\ the\ division

3: Add this square\ to\ both\ sides\ of\ the\ equation.

So, we have:

[x^2  + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}

[x^2  + 3x + (\frac{3}{2})^2] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2

Factorize

[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2

Apply the same to y

[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y +(\frac{4}{6})^2 ] =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ \frac{9}{4} +\frac{16}{36}

Add the fractions

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{-19 * 4 + 9 * 9 + 16 * 1}{36}

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{21}{36}

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{7}{12}

[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}

Recall that:

(x - h)^2 + (y - k)^2 = r^2

By comparison:

r^2 =\frac{7}{12}

Take square roots of both sides

r =\sqrt{\frac{7}{12}}

Split

r =\frac{\sqrt 7}{\sqrt 12}

Rationalize

r =\frac{\sqrt 7*\sqrt 12}{\sqrt 12*\sqrt 12}

r =\frac{\sqrt {84}}{12}

r =\frac{\sqrt {4*21}}{12}

r =\frac{2\sqrt {21}}{12}

r =\frac{\sqrt {21}}{6}

Solving (b): The center

Recall that:

(x - h)^2 + (y - k)^2 = r^2

Where

r = radius

(h,k) =center

From:

[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}

-h = \frac{3}{2} and -k = \frac{2}{3}

Solve for h and k

h = -\frac{3}{2} and k = -\frac{2}{3}

Hence, the center is:

Center = (-\frac{3}{2}, -\frac{2}{3})

6 0
2 years ago
The point (1,5) lies in quadrant II of a rectangular coordinate system​
natali 33 [55]

Answer:

No

Step-by-step explanation:

Complex answer: For a point to be in quadrant II, it must have a negative x value and a positive y value.

Simple answer: The 1 would have to be negative to be in quadrant II, and it isn't

6 0
2 years ago
Please help!!!!!
sergeinik [125]

-8.1

Step-by-step explanation:

\frac{ - 4}{9} x + 2.4 = 6

<em>Times </em><em>all </em><em>by </em><em>9</em><em> </em><em>to </em><em>get </em><em>rid </em><em>of </em><em>fraction</em>

<em>- 4x + 21.6 = 54</em>

<em>Take </em><em>2</em><em>1</em><em>.</em><em>6</em><em> </em><em>away</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em>

<em>- 4x = 32.4</em>

<em>Divide</em><em> </em><em>by </em><em>-</em><em>4</em>

<em>x =  - 8.1</em>

8 0
2 years ago
Read 2 more answers
Other questions:
  • Please help! Having trouble finding the other point!
    8·2 answers
  • Work out 50% of £60<br> needed asap
    6·1 answer
  • Let f(x)=2x2-x+5 and g(x)=3x2-3x-2. Calculate h(1), if h(x)=f(x)+g(x).
    10·1 answer
  • Given the Arithmetic sequence A1,A2,A3,A4A1,A2,A3,A4
    10·1 answer
  • Evaluate the following:<br><br> Options are:<br> pi/2<br> pi/8<br> pi<br> Does not converge
    15·1 answer
  • I need help with these questions
    9·2 answers
  • Determine any data values that are missing from the table, assuming that the data represent a linear function.
    15·2 answers
  • Find the best approximation of the surface area of this cylinder.
    5·1 answer
  • What is the equation of the line that passes through the point (4,7) and has a slope<br> of -1/4
    10·1 answer
  • In the equation 2x + 3y = 19, what is the constant?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!