Answer:
Change in entropy for the reaction is
ΔS° = -268.13 J/K.mol
Explanation:
To calculate the change in entropy for the balanced reaction, we require the natural entropy of all the reactants and products in the reaction.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
From Literature.
S°(NO₂) = 240.06 J/K.mol
S°(H₂O) = 69.91 J/K.mol
S°(HNO₃) = 155.60 J/K.mol
S°(NO) = 210.76 J/K.mol
These are the entropies of the reactants and products under standard conditions of 298.15 K and 1 atm.
Note that
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
Σ nᵢS°(for products) = [2 × S°(HNO₃)] + [1 × S°(NO)]
= (2 × 155.60) + (1 × 210.76) = 521.96 J/K.mol
Σ nᵢS°(for reactants) = [3 × S°(NO₂)] + [1 × S°(H₂O)]
= (3 × 240.06) + (1 × 69.91) =790.09 J/K.mol
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
ΔS° = 521.96 - 790.09 = -268.13 J/K.mol
Hope this Helps!!
Each mole of Ca(OH)₂ will produce 2 moles of OH- ions
Each mole of OH- ions will require one mole of H+ ions
Thus,
moles of OH- ions = moles of H+ ions = 2 x 0.3
moles of H+ ions required = 0.6
Each mole of HCl will produce one mole of H+ ions
Moles of HCl = moles of H+ ions
Moles of HCl = 0.6
Enzymes are biological catalysts which means they accelerate chemical reactions.
Hope this helps :)
Answer:

Explanation:
Hello!
In this case, as we know the mass of the total sample, we can first compute the mass of oxygen:

Next, we compute the moles of each element:

Now, we divide the moles by 0.184 moles, the fewest ones, to obtain:

Therefore, the empirical formula is:

Regards!