Answer:
It is called the atomic theory I believe.
Explanation:
Answer:
Nitrogen, 
Explanation:
Hello,
This is a clear example of what the ideal gas equation is used for, thus, from its mathematical definition:

One can spell it out in terms of mass and molar mass:

Now, solving for the molecular mass,
:

Now, by taking into account that the gas is diatomic, the matching gas turns out to be nitrogen.
Best regards.
Answer:
Each carbon atom is covalently bonded to 4 other carbon atoms in diamond. A large amount of energy is required to split these atoms apart. This is because of the fact that covalent bonds are strong.
The question is incomplete, complete question is :
In an organic structure, you can classify each of the carbons as follows: Primary carbon (1°) = carbon bonded to just 1 other carbon group Secondary carbon (2°) = carbon bonded to 2 other carbon groups Tertiary carbon (3°) = carbon bonded to 3 other carbon groups Quaternary carbon (4°) = carbon bonded to 4 other carbon groups How many carbons of each classification are in the structure below? How many total carbons are in the structure? How many primary carbons are in the structure? How many secondary carbons are in the structure? How many tertiary carbons are in the structure? How many quaternary carbons are in the structure?
Structure is given in an image?
Answer:
There are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Explanation:
Total numbers of carbon = 10
Number of primary carbons that is carbon joined to just single carbon atom = 6
Number of secondary carbons that is carbon joined to two carbon atoms = 1
Number of tertiary carbons that is carbon joined to three carbon atoms = 2
Number of quartenary carbons that is carbon joined to four carbon atoms = 1
So, there are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.