Answer:
The difference between ice and steam in Celsius (Centigrade) is 100 deg.
So the difference between and 4 cm and 24 cm of the thread corresponds to 100 deg C.
So 8 cm is 4 cm greater than the ice point
4 cm / 20 cm = 1/5 since the steam point and the ice point are 20 cm apart
Then 1/5 * 100 deg C = 20 deg C the requested temperature
During that final period of time,
his acceleration is
(9 m/s - 5 m/s) / (4 sec) = 1 m/s² .
Did you have a question to ask ?
Answer:
unmmmmmmmm I think the answerA
Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s