Answer:
i speak english not spanigh sorry :(
Explanation:
The electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
<h3>What is electric potential energy?</h3>
Electric potential energy can be defined as the energy needed to move a charge against an electric field.
It is calculated using the formula;
U = Kq1 q2 ÷ r
Where Q = electric potential energy
k = Coulombs constant
q1 and q2 = charges
r = distance of separation
Electric potential energy is inversely proportional to the distance of separation of the charges.
If the distance of the charges changes from 3mm to 6mm, then the electric potential energy of the charges is reduced because it decreases with increase in the distance of the charges.
Therefore, the electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
Learn more about electric potential energy here:
brainly.com/question/14812976
#SPJ1
Answer:
Er = 231.76 V/m, 27.23° to the left of E1
Explanation:
To find the resultant electric field, you can use the component method. Where you add the respective x-component and y-component of each vector:
E1:

E2:
Keep in mind that the x component of electric field E2 is directed to the left.

∑x: 
∑y: 
The magnitud of the resulting electric field can be found using pythagorean theorem. For the direction, we will use trigonometry.
or 27.23° to the left of E1.
<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>
Alright here the answer to number 2